3 resultados para Toxina
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Shiga toxigenic Escherichia coli (STEC) and Attaching and effacing E. coli (AEEC) have been associated with diarrhea illness in dogs. From January to December 2006, 92 E. coli isolates from 25 diarrheic dogs were analyzed, by screening for the presence of Shiga toxin-producing (stx 1 and stx 2) and intimin (eae) genes. Twelve isolates were detected by PCR to harbor the Shiga toxin genes (7 the stx 1 (7.6%); 5 the stx 2 (5.4%); and none both of them). Nine (9.8%) of the E. coli isolates studied were eae positive non Shiga toxin-producing. Thirteen (62.0%) isolates, carrying stx or eae gene, also showed a hemolysin production. The strains with virulence genes were also examined for resistance to 12 antimicrobial agents. Resistances to cephalothin (85.7%), streptomycin (81.0%), amoxicillin (71.4%) and gentamicin (71.4%) were predominantly observed.
Resumo:
No effective vaccine or immunotherapy is presently available for patients with the hemolytic uremic syndrome (HUS) induced by Shiga-like toxin (Stx) producedbyenterohaemorragic Escherichia coli (EHEC) strains, such as those belonging to the O157:H7 serotype. In this work we evaluated the performance of Bacillus subtilis strains, a harmless spore former gram-positive bacterium species, as a vaccine vehicle for the expression of Stx2B subunit (Stx2B). A recombinant B. subtilis vaccine strain expressing Stx2B under the control of a stress inducible promoter was delivered to BALB/c mice via oral, nasal or subcutaneous routes using both vegetative cells and spores. Mice immunized with vegetative cells by the oral route developed low but specific anti-Stx2B serum IgG and fecal IgA responses while mice immunized with recombinant spores developed anti-Stx2B responses only after administration via the parenteral route. Nonetheless, serum anti-Stx2B antibodies raised in mice immunized with the recombinant B. subtilis strain did not inhibit the toxic effects of the native toxin, both under in vitro and in vivo conditions, suggesting that either the quantity or the quality of the induced immune response did not support an effective neutralization of Stx2 produced by EHEC strains.