22 resultados para Torsional Actuators

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of thermal disorder on the electronic structure of one-dimensional poly-para-phenylene (PPP). In a real chain the torsion angles between rings are bound to be distributed over a range of values, which depend on temperature, and thus the chain is intrinsically disordered. In this study we simulated this kind of thermally induced off-diagonal disorder through the simple Huckel method. We base our Hamiltonian on ab initio results for the effect of temperature on torsion angles, and the effect of torsion angles on the energy gap. We analyze the electronic structure of 200-monomer-long chains focusing on the density of states, and the associated localization character (measured by the inverse participation ratio). Our results contrast with the usually assumed Gaussian-shaped density of localized states for disordered systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study evaluated the influence of two endodontic post systems and the elastic modulus and film thickness of resin cement on stress distribution in a maxillary central incisor (MCI) restored with direct resin composite using finite element analysis (FEA). A three-dimensional model of an MCI with a coronary fracture and supporting structures was performed. A static chewing pressure of 2.16 N/mm(2) was applied to two areas on the palatal surface of the composite restoration. Zirconia ceramic (ZC) and glass fiber (GF) posts were considered. The stress distribution was analyzed in the post, dentin and cement layer when ZC and GF posts were fixed to the root canals using resin cements of different elastic moduli (7.0 and 18.6 GPa) and different layer thicknesses (70 and 200 mu m). The different post materials presented a significant influence on stress distribution with lesser stress concentration when using the GF post. The higher elastic modulus cement created higher stress levels within itself. The cement thicknesses did not present significant changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micronozzles with piezoelectric actuator were fabricated and investigated. The micronozzles were fabricated in glass substrates using a powder-blasting technique, and the actuator is a bimorph structure made from a piezoelectric polymer. The actuator was located at the nozzle outlet, and was driven in an oscillating mode by applying an alternating voltage across the actuator electrodes. With a pressure difference between inlet and outlet, the gas flow rate through the device was increased. This effect was quantified, and compared to a similar micronozzle with no actuator. The increase in the flow rate was defined as the gas flow through the micronozzle with actuator oscillating minus the gas flow without actuator, was found to depend on the inlet pressure, the pressure ratio, and the nozzle throat diameter. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytic properties of copper thin films deposited in small channels and cavities were tested using Raman microscopy and mass spectroscopy (MS) techniques, mainly. The catalytic surface conditions were addressed visually and chemically by optical microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The experimental conditions of present work induced copper oxidation; eventually a number of carbon species and graphite remained on the catalytic surface. Quartz crystal microbalance and mass spectroscopy data support both adsorption and catalysis phenomena. MS showed CO2 formation during n-hexane heating process but not to 2-propanol, probably due to redox reactions. XPS of copper surface present in the cavity after catalysis tests detected Cu2O and a range of possible carbon species. The adsorption and catalytic performance of copper films deposited in cavities and microchannels were quite similar. A simple miniaturized device for microanalysis was proposed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of conjugated polymers in the gas and volatile organic compounds (VOCs) detections represents an advance in the development of the electronic noses. Polythiophenes show good thermal and environmental stability, are easily synthesized and they have been studied as gas and VOCs sensors using different principles or transduction techniques. Among these techniques, optical sensing has been attracted attention, mainly due to its versatility. However, conjugated polymer-based optical sensors are still less studied. This paper describes the use of two poly(3-alkylthiophenes) for VOCs optical detection. The sensing measurements were carried out using visible spectroscopy. Both polymers showed good sensitivity to the VOCs, showing fast and reversible responses with some hysteresis, and were unable to detect hydroxylated samples. Furthermore, it was demonstrated that the thickness of polymer films influences the intensity of the optical response. Although there is similarity in the superficial composition of the polymers films, demonstrated by their surface energies, they showed significant differences in their optical properties upon exposure to the VOCs. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mebendazole (MBZ) is a common benzimidazole anthelmintic that exists in three different polymorphic forms, A, B, and C. Polymorph C is the pharmaceutically preferred form due to its adequated aqueous solubility. No single crystal structure determinations depicting the nature of the crystal packing and molecular conformation and geometry have been performed on this compound. The crystal structure of mebendazole form C is resolved for the first time. Mebendazole form C crystallizes in the triclinic centrosymmetric space group and this drug is practically planar, since the least-squares methyl benzimidazolylcarbamate plane is much fitted on the forming atoms. However, the benzoyl group is twisted by 31(1)degrees from the benzimidazole ring, likewise the torsional angle between the benzene and carbonyl moieties is 27(1)degrees. The formerly described bends and other interesting intramolecular geometry features were viewed as consequence of the intermolecular contacts occurring within mebendazole C structure. Among these features, a conjugation decreasing through the imine nitrogen atom of the benzimidazole core and a further resonance path crossing the carbamate one were described. At last, the X-ray powder diffractogram of a form C rich mebendazole mixture was overlaid to the calculated one with the mebendazole crystal structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:2336-2344, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents an investigation of the temperature induced modification in the microstructure and dynamics of poly[2-methoxy-5-(2`-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) cast films using Wide-Angle X-ray Scattering (WAXS), solid-state Nuclear Magnetic Resonance (NMR), and Fluorescence Spectroscopy (PL). MEH-PPV chain motions were characterized as a function of temperature by NMR. The results indicated that the solvent used to cast the films influences the activation energy of the side-chain motions. This was concluded from the comparison of the activation energy of the toluene cast film, E(a) = (54 +/- 8) kJ/mol, and chloroform cast film, E(a) = (69 +/- 5) kJ/mol, and could be attributed to the higher side-chain packing provided by chloroform, that preferentially solvates the side chain in contrast to toluene that solvates mainly the backbone. Concerning the backbone mobility, it was observed that the torsional motions in the MEH-PPV have average amplitude of similar to 10 degrees at 300 K, which was found to be independent of the solvent used to cast the films. In order to correlate the molecular dynamics processes with the changes in the microstructure of the polymer, in situ WAXS experiments as a function of temperature were performed and revealed that the interchain spacing in the MEH-PPV molecular aggregates increases as a function of temperature, particularly at temperatures where molecular relaxations occur. It was also observed that the WAXS peak associated with the bilayer spacing becomes narrower and its intensity increases whereas the peak associated with the inter-backbone planes reduces its intensity for higher temperatures. This last result Could be interpreted as a decrease in the number of aggregates and the reduction of the interchain species during the MEH-PPV relaxation processes. These WAXS results were correlated with PL spectra modifications observed upon temperature treatments. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the molecular structure and conformational analyses of the 4-isopropylthioxanthone (4-ITX) are reported according to experimental and theoretical results. The compound crystallizes in the centrosymmetric P (1) over bar space group with only one molecule in the asymmetric unit, presenting the most stable conformation, in which the three fused-rings adopt a planar geometry, and the isopropyl group assumes a torsional angle with less sterical hindrance. The structural and conformational analyses were performed using theoretical calculations such as Hartree-Fock (HF), DFT method in combination with 6-311G(d,p) and 6-31++G(d,p) and the results were compared with infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The supramolecular assembly of 4-ITX is kept by non-classical C-H center dot center dot center dot O hydrogen bonds and weak interactions such as pi-pi stacking. 4-ITX was also studied by (1)H and (13)C NMR spectroscopy. UV-Vis absorption spectroscopic properties of the 4-ITX showed the long-wavelength maximum shifts towards high energy when the solvent polarity increases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reliable and fast sensor for in vitro evaluation of solar protection factors (SPFs) of cosmetic products, based on the photobleaching kinetics of a nanocrystalline TiO(2)/dye UV-dosimeter, has been devised. The accuracy, robustness and suitability of the new device was demonstrated by the excellent matching of the predicted and the in vivo results up to SPF 70, for four standard samples analyzed in blind. These results strongly suggest that our device can be useful for routine SPF evaluation in laboratories devoted to the development or production of cosmetic formulations, since the conventional in vitro methods tend to exhibit unacceptably high errors above SPF similar to 30 and the conventional in vivo methods tend to be expensive and exceedingly time consuming. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vanadium pentoxide xerogels (VXG) incorporating meso(3- and 4-pyridyl)porphyrin cobalt(III) species coordinated to four [Ru(bipy)(2)Cl](+) complexes were employed as gas sensing materials capable of detecting small amounts of water in commercial ethanol and fuel supplies. According to their X-ray diffraction data, the original VXG lamellar framework was maintained in the nanocomposite material, but the interlamellar distance increased from 11.7 to 15.2 angstrom, reflecting the intercalation of the porphyrin species into the vanadium pentoxide matrix. The films generated by direct deposition of the nanocomposite aqueous suspensions exhibited good electrical and electrochemical performance for application in resistive sensors. The analysis of water in ethanol and fuels was carried out successfully using an especially designed electric setup incorporating a laminar gas flow chamber and interdigitated gold electrodes coated with the nanocomposites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper outlines the results obtained with biosensors designed for urea amperometric detection. The incorporation of urease into a bipolymeric substrate consisting of poly(pyrrole) and poly(5-amino-1-naphthol) was performed through four different approaches: direct adsorption, entrapment in cellulose acetate layer. cross-linking with glutaraldehyde, and also covalent attachment to the polymeric matrix. Poly(pyrrole) acts as amperometric transducer in these biosensors, while poly(5-amino-1-naphthol) drastically reduces the interference signal of agents such as ascorbic and uric acids. The biosensors containing urease covalently attached to the substrate provided interesting results in terms of sensitivity towards urea (0.50 mu A cm(-2) mmol(-1) L), lifetime (20 days) and short response times, due to the enzyme immobilization method used. All biosensors analyzed showed also a wide linear concentration range (up to 100 mmol L(-1)) and low detection limits (0.22-0.58 mmol L(-1)). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach to fabricate a disposable electronic tongue is reported. The fabrication of the disposable sensor aimed the integration of all electrodes necessary for measurement in the same device. The disposable device was constructed with gold CD-R and copper sheets substrates and the sensing elements were gold, copper and a gold surface modified with a layer of Prussian Blue. The relative standard deviation for signals obtained from 20 different disposable gold and 10 different disposable copper electrodes was below 3.5%. The performance, electrode materials and the capability of the device to differentiate samples were evaluated for taste substances model, milk with different pasteurization processes (homogenized/pasteurized, ultra high temperature (UHT) pasteurized and UHT pasteurized with low fat content) and adulterated with hydrogen peroxide. In all analysed cases, a good separation between different samples was noticed in the score plots obtained from the principal component analysis (PCA). Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we describe the electrosynthesis of poly[(2-bromo-5-hexyloxy- 1,4-phenylenevinylene)-co-(1,4-phenylenevinylene)] (BHPPV-co-PPV), a novel conducting copolymer, and its application as active layer of a chemiresistive gas sensor suitable for quantification of ethanol present in ethanol-gasoline mixtures normally present in the fuel tanks of flex-fuel vehicles. This information is crucial for the smooth operation of the engine since it permits optimal air:fuel ratio regulation. The sensor consists of an interdigitated electrode coated with a thin polymer film doped with dodecylbenzenesulfonic acid. On exposure to fuel vapours at room temperature, the device presents a linear correlation between its electrical conductance and the ethanol concentration in the fuel. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.