9 resultados para Torque aerodinâmico
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Internal tapered connections were developed to improve biomechanical properties and to reduce mechanical problems found in other implant connection systems. The purpose of this study was to evaluate the effects of mechanical loading and repeated insertion/removal cycles on the torque loss of abutments with internal tapered connections. Sixty-eight conical implants and 68 abutments of two types were used. They were divided into four groups: groups 1 and 3 received solid abutments, and groups 2 and 4 received two-piece abutments. In groups 1 and 2, abutments were simply installed and uninstalled; torque-in and torque-out values were measured. In groups 3 and 4, abutments were installed, mechanically loaded and uninstalled; torque-in and torque-out values were measured. Under mechanical loading, two-piece abutments were frictionally locked into the implant; thus, data of group 4 were catalogued under two subgroups (4a: torque-out value necessary to loosen the fixation screw; 4b: torque-out value necessary to remove the abutment from the implant). Ten insertion/removal cycles were performed for every implant/abutment assembly. Data were analyzed with a mixed linear model (P <= 0.05). Torque loss was higher in groups 4a and 2 (over 30% loss), followed by group 1 (10.5% loss), group 3 (5.4% loss) and group 4b (39% torque gain). All the results were significantly different. As the number of insertion/removal cycles increased, removal torques tended to be lower. It was concluded that mechanical loading increased removal torque of loaded abutments in comparison with unloaded abutments, and removal torque values tended to decrease as the number of insertion/removal cycles increased. To cite this article:Ricciardi Coppede A, de Mattos MdaGC, Rodrigues RCS, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study.Clin. Oral Impl. Res. 20, 2009; 624-632.doi: 10.1111/j.1600-0501.2008.01690.x.
Resumo:
Purpose: The aim of this study was to compare the accuracy of fit of three types of implant-supported frameworks cast in Ni-Cr alloy: specifically, a framework cast as one piece compared to frameworks cast separately in sections to the transverse or the diagonal axis, and later laser welded. Materials and Methods: Three sets of similar implant-supported frameworks were constructed. The first group of six 3-unit implant-supported frameworks were cast as one piece, the second group of six were sectioned in the transverse axis of the pontic region prior to casting, and the last group of six were sectioned in the diagonal axis of the pontic region prior to casting. The sectioned frameworks were positioned in the matrix (10 N(.)cm torque) and laser welded. To evaluate passive fit, readings were made with an optical microscope with both screws tightened and with only one-screw tightened. Data were submitted to ANOVA and Tukey-Kramer`s test (p < 0.05). Results: When both screws were tightened, no differences were found between the three groups (p > 0.05). In the single-screw-tightened test, with readings made opposite to the tightened side, the group cast as one piece (57.02 +/- 33.48 mu m) was significantly different (p < 0.05) from the group sectioned diagonally (18.92 +/- 4.75 mu m) but no different (p > 0.05) from the group transversally sectioned (31.42 +/- 20.68 mu m). On the tightened side, no significant differences were found between the groups (p > 0.05). Conclusions: Results of this study showed that casting diagonally sectioned frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves the levels of passivity to the same frameworks when compared to structures cast as one piece.
Resumo:
An inappropriate prosthetic fit could cause stress over the interface implant/bone. The objective of this study was to compare stresses transmitted to implants from frameworks cast using different materials and to investigate a possible correlation between vertical misfits and these stresses. Fifteen one-piece cast frameworks simulating bars for fixed prosthesis in a model with five implants were fabricated and arranged into three different groups according to the material used for casting: CP Ti (commercially pure titanium), Co-Cr (cobalt-chromium) or Ni-Cr-Ti (nickel-chromium-titanium) alloys. Each framework was installed over the metal model with all screws tightened to a 10 N cm torque and then, vertical misfits were measured using an optical microscope. The stresses transmitted to implants were measured using quantitative photoelastic analysis in values of maximum shear stress (T), when each framework was tightened to the photoelastic model to a 10 N cm standardized torque. Stress data were statistically analyzed using one-way ANOVA and Tukey`s test and correlation tests were performed using Pearson`s rank correlation (alpha = 0.05). Mean and standard deviation values of vertical misfit are presented for CP Ti (22.40 +/- 9.05 mu m), Co-Cr (66.41 +/- 35.47 mu m) and Ni-Cr-Ti (32.20 +/- 24.47 mu m). Stresses generated by Co-Cr alloy (tau = 7.70 +/- 2.16 kPa) were significantly higher than those generated by CP Ti (tau = 5.86 +/- 1.55 kPa, p = 0.018) and Ni-Cr-Ti alloy (tau =5.74 +/- 3.05 kPa, p = 0.011), which were similar (p = 0.982). Correlations between vertical misfits and stresses around the implants were not significant as for any evaluated materials. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Aim To study osseointegration and bone-level changes at implants installed using either a standard or a reduced diameter bur for implant bed preparation. Material and methods In six Labrador dogs, the first and second premolars were extracted bilaterally. Subsequently, mesial roots of the first molars were endodontically treated and distal roots, including the corresponding part of the crown, were extracted. After 3 months of healing, flaps were elevated and recipient sites were prepared in all experimental sites. The control site was prepared using a standard procedure, while the test site was prepared using a drill with a 0.2 mm reduced diameter than the standard one used in the contra-lateral side. After 4 months of healing, the animals were euthanized and biopsies were obtained for histological processing and evaluation. Results With the exception of one implant that was lost, all implants were integrated in mineralized bone. The alveolar crest underwent resorption at control as well as at test sites (buccal aspect similar to 1 mm). The most coronal contact of bone-to-implant was located between 1.2 and 1.6 mm at the test and between 1.3 and 1.7 mm at the control sites. Bone-to-implant contact percentage was between 49% and 67%. No statistically significant differences were found for any of the outcome variables. Conclusions After 4 months of healing, lateral pressure to the implant bed as reflected by higher insertion torques (36 vs. 15 N cm in the premolar and 19 vs. 7 N cm in the molar regions) did not affect the bone-to-implant contact. To cite this article:Pantani F, Botticelli D, Garcia IR Jr., Salata LA, Borges GJ, Lang NP. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs.Clin. Oral Impl. Res. 21, 2010; 1264-1270.doi: 10.1111/j.1600-0501.2009.01941.x.
Resumo:
P>This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P < 0 center dot 05). With both screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27 center dot 57 +/- 5 center dot 06 mu m) than other groups (I: 11 center dot 19 +/- 2 center dot 54 mu m, III: 12 center dot 88 +/- 2 center dot 93 mu m, IV: 13 center dot 77 +/- 1 center dot 51 mu m) (P < 0 center dot 05). In the single-screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58 center dot 66 +/- 14 center dot 30 mu m) was significantly different from cp Ti group after diagonal section (IV: 27 center dot 51 +/- 8 center dot 28 mu m) (P < 0 center dot 05). On the tightened side, no significant differences were found between groups (P > 0 center dot 05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.
Resumo:
Background: Physical and bioceramic incorporation surface treatments at the nanometer scale showed higher means of bone-to-implant contact (BIC) and torque values compared with surface topography at the micrometer scale; however, the literature concerning the effect of nanometer scale parameters is sparse. Purpose: The aim of this study was to evaluate the influence of two different implant surfaces on the percentage bone-to-implant contact (BIC%) and bone osteocyte density in the human posterior maxilla after 2 months of unloaded healing. Materials and Methods: The implants utilized presented dual acid-etched (DAE) surface and a bioceramic molecular impregnated treatment (Ossean(R), Intra-Lock International, Boca Raton, FL, USA) serving as control and test, respectively. Ten subjects (59 1 9 years of age) received two implants (one of each surface) during conventional implant surgery in the posterior maxilla. After the non-loaded period of 2 months, the implants and the surrounding tissue were removed by means of a trephine and were non-decalcified processed for ground sectioning and analysis of BIC%, bone density in threaded area (BA%), and osteocyte index (Oi). Results: Two DAE implants were found to be clinically unstable at time of retrieval. Histometric evaluation showed significantly higher BIC% and Oi for the test compared to the control surface (p < .05), and that BA% was not significantly different between groups. Wilcoxon matched pairs test was used to compare the differences of histomorphometric variables between implant surfaces. The significance test was conducted at a 5% level of significance. Conclusion: The histological data suggest that the bioceramic molecular impregnated surface-treated implants positively modulated bone healing at early implantation times compared to the DAE surface.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
It is generally assumed that the magnetic fields of millisecond pulsars (MSPs) are similar to 10(8) G. We argue that this may not be true and the fields may be appreciably greater. We present six evidences for this: (1) The similar to 10(8)G field estimate is based on magnetic dipole emission losses which is shown to be questionable; (2) The MSPs in low mass X-ray binaries (LMXBs) are claimed to have < 10(11) G on the basis of a Rayleygh-Taylor instability accretion argument. We show that the accretion argument is questionable and the upper limit 10(11) G may be much higher; (3) Low magnetic field neutron stars have difficulty being produced in LMXBs; (4) MSPs may still be accreting indicating a much higher magnetic field; (5) The data that predict similar to 10(8) G for MSPs also predict ages on the order of, and greater than, ten billion years, which is much greater than normal pulsars. If the predicted ages are wrong, most likely the predicted similar to 10(8) G fields of MSPs are wrong; (6) When magnetic fields are measured directly with cyclotron lines in X-ray binaries, fields a parts per thousand << 10(8) G are indicated. Other scenarios should be investigated. One such scenario is the following. Over 85% of MSPs are confirmed members of a binary. It is possible that all MSPs are in large separation binaries having magnetic fields > 10(8) G with their magnetic dipole emission being balanced by low level accretion from their companions.
Resumo:
Aim. To verify the muscular force and resistance to the movement of the flexor and extensor muscles of the knee of patients with spasticity after treatment with neuromuscular electrical stimulation (NMES) and isotonic exercises. Patients and methods. The patients this study were divided into group I (NMES) and group 2 (isotonic exercises). Their muscular torque and resistance to the movement of the flexor and extensor knee muscles were measured by the isokinetic dynamometer and the degree of spasticity by the modified Ashworth scale before and after ten sessions. Results. Alterations in the scores of the modified Ashworth scale were not observed. An increase in the flexor torque in group 1 (p = 0.041) and in group 2 (p = 0.001) was verified. In the passive mode, group 1 presented a reduction of resistance to the flexion movement (p = 0.026), while in group 2, a reduction of resistance to both the flexion (p = 0,029) and extension movements (p = 0.019) was verified. Conclusions. The two therapeutical resources had their efficiency proven only for the increase of the force of the flexor muscles. The resistance to movement, the isotonic exercises were more effective because they promoted a reduction in the resistance of the flexor and extensor knee muscles.