3 resultados para Thompson, John

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyzed the structure of a multispecific network or interacting ants and plants bearing extrafloral nectaries recorded in 1990 and again in 2000 in La Mancha, Veracruz, Mexico. We assessed the replicability of the number of interactions found among species and also whether there had been changes in the network structure associated with appearance of new ant and plant species during. that 10-year period. Our results show that the nested topology of the network was similar between sampling dates, group dissimilarity increased, mean number of interactions for ant species increased, the frequency distribution of standardized degrees reached higher values for plant species, more ant species and fewer plant species constituted the core of the more recent network, and the presence of new ant and plant species increased while their contribution to nestedness remained the same. Generalist species (i.e., those with the most links or interactions) appeared to maintain the stability of the network because the new species incorporated into the communities were linked to this core of generalists. Camponotus planatus was the most extreme generalist ant species (the one with the most links) in both networks, followed by four other ant species; but other species changed either their position along the continuum of generalists relative to specialists or their presence or absence within the network. Even though new species moved into the area during the decade between the surveys, the overall network structure remained unmodified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major current challenge in evolutionary biology is to understand how networks of interacting species shape the coevolutionary process. We combined a model for trait evolution with data for twenty plant-animal assemblages to explore coevolution in mutualistic networks. The results revealed three fundamental aspects of coevolution in species-rich mutualisms. First, coevolution shapes species traits throughout mutualistic networks by speeding up the overall rate of evolution. Second, coevolution results in higher trait complementarity in interacting partners and trait convergence in species in the same trophic level. Third, convergence is higher in the presence of super-generalists, which are species that interact with multiple groups of species. We predict that worldwide shifts in the occurrence of super-generalists will alter how coevolution shapes webs of interacting species. Introduced species such as honeybees will favour trait convergence in invaded communities, whereas the loss of large frugivores will lead to increased trait dissimilarity in tropical ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we prove that any automorphism of R. Thompson`s group F has infinitely many twisted conjugacy classes. The result follows from the work of Brin, together with standard facts about R. Thompson`s group F, and elementary properties of the Reidemeister numbers.