3 resultados para Thermo-mechanical finite element model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider incompressible Stokes flow with an internal interface at which the pressure is discontinuous, as happens for example in problems involving surface tension. We assume that the mesh does not follow the interface, which makes classical interpolation spaces to yield suboptimal convergence rates (typically, the interpolation error in the L(2)(Omega)-norm is of order h(1/2)). We propose a modification of the P(1)-conforming space that accommodates discontinuities at the interface without introducing additional degrees of freedom or modifying the sparsity pattern of the linear system. The unknowns are the pressure values at the vertices of the mesh and the basis functions are computed locally at each element, so that the implementation of the proposed space into existing codes is straightforward. With this modification, numerical tests show that the interpolation order improves to O(h(3/2)). The new pressure space is implemented for the stable P(1)(+)/P(1) mini-element discretization, and for the stabilized equal-order P(1)/P(1) discretization. Assessment is carried out for Poiseuille flow with a forcing surface and for a static bubble. In all cases the proposed pressure space leads to improved convergence orders and to more accurate results than the standard P(1) space. In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-Taylor instability and merging bubbles) are reported to show that the proposed space is robust enough to carry out realistic simulations. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298: C1245-C1252, 2010. First published February 17, 2010; doi: 10.1152/ajpcell.00417.2009.-Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.