172 resultados para Thermal Energy

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ground state thermal neutron cross section and the resonance integral for the (165)Ho(n, gamma)(166)Ho reaction in thermal and 1/E regions, respectively, of a thermal reactor neutron spectrum have been measured experimentally by activation technique. The reaction product, (166)Ho in the ground state, is gaining considerable importance as a therapeutic radionuclide and precisely measured data of the reaction are of significance from the fundamental point of view as well as for application. In this work, the spectrographically pure holmium oxide (Ho(2)O(3)) powder samples were irradiated with and without cadmium covers at the IEA-RI reactor (IPEN, Sao Paulo), Brazil. The deviation of the neutron spectrum shape from 1/E law was measured by co-irradiating Co, Zn, Zr and Au activation detectors with thermal and epithermal neutrons followed by regression and iterative procedures. The magnitudes of the discrepancies that can occur in measurements made with the ideal 1/E law considerations in the epithermal range were studied. The measured thermal neutron cross section at the Maxwellian averaged thermal energy of 0.0253 eV is 59.0 +/- 2.1 b and for the resonance integral 657 +/- 36b. The results are measured with good precision and indicated a consistency trend to resolve the discrepant status of the literature data. The results are compared with the values in main libraries such as ENDF/B-VII, JEF-2.2 and JENDL-3.2, and with other measurements in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interplay between the biocolloidal characteristics (especially size and charge), pH, salt concentration and the thermal energy results in a unique collection of mesoscopic forces of importance to the molecular organization and function in biological systems. By means of Monte Carlo simulations and semi-quantitative analysis in terms of perturbation theory, we describe a general electrostatic mechanism that gives attraction at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid residues is discussed in a purely electrostatic framework. The complexation data reported here for interaction between a polyelectrolyte chain and the proteins albumin, goat and bovine alpha-lactalbumin, beta-lactoglobulin, insulin, k-casein, lysozyme and pectin methylesterase illustrate the importance of the charge regulation mechanism. Special attention is given to pH congruent to pI where ion-dipole and charge regulation interactions could overcome the repulsive ion-ion interaction. By means of protein mutations, we confirm the importance of the charge regulation mechanism, and quantify when the complexation is dominated either by charge regulation or by the ion-dipole term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GERIPA project aimed at generating renewable energy integrated with food production has led to a beneficial option for producing ethanol and electricity. Ethanol has economic, social and environmental potential. Considering just the first one, Brazil consumes 39 billion litres per year-L(D)/yr of diesel oil, 18% of it being imported. The Federal Government has a recovery programme for the soybean agribusiness aimed at soybean biodiesel (SBD) production in which a 10% addition to diesel has been proposed. This 10% involves producing 10.7 million L(SB)/d. Soybean bio-diesel production is not self-sustainable and such proposal could require an annual subsidy of up to US$1.33 billion. Soybean plantations would need about 10 to 12 times more land than is necessary for sugarcane plantations to produce the same equivalent thermal energy (ETE). Sixty-seven GERIPA projects (GP) producing 80,000 litres of ethanol per day (GP80) could be set up with the sum of US$1.33 billion; this would substitute current Brazilian biodiesel demand by 4.28%, adding the some value for each new subsidiary. Considering ETE, ethanol-GP cost would be 37% to 50% below that for a litre of SBD on account of its raw material (RM) and region. The diesel cycle`s thermal efficiency (eta(1)) yield is around 50% and that of the Otto cycle engine eta(1) is around 37%. The cost per km driven (CKD) by substituting SBD for ethanol-GP80 would thus indicate an 18% minimum and 59% maximum cost reduction for vehicle engines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the effects of nitrate supply under photosynthetic active radiation (PAR) plus ultraviolet radiation (UVR) exposure on photosynthetic pigments (chlorophyll a and carotenoids), photoprotective UV screen mycosporine-like amino acids (MAAs), and photosynthetic parameters, including the maximum quantum yield (F(v)/F(m)) and electron transport rate (ETR) on the red agarophyte Gracilaria tenuistipitata. Apical tips of G. tenuistipitata were cultivated under ten different concentrations of NO(3)(-) for 7 days. It has been shown that G. tenuistipitata cultured under laboratory conditions has the ability to accumulate high amounts of MAAs following a nitrate concentration-dependent manner under PAR+UVR. Two MAAs were identified, shinorine and porphyra-334. The relative concentration of the first increased under high concentrations of nitrate, while the second one decreased. The presence of antheraxanthin is reported for the first time in this macro-algae, which also contains zeaxanthin, lutein, and beta-carotene. The accumulation of pigments, photoprotective compounds, and photosynthetic parameters of G. tenuistipitata is directly related to N availability. All variables decreased under low N supplies and reached constant maximum values with supplements higher than 0.5 mM NO(3)(-). Our results suggest a high potential to acclimation and photoprotection against stress factors (including high PAR and UVR) directly related to N availability for G. tenuistipitata.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Z-scan and thermal-lens techniques have been used to obtain the energy transfer upconversion parameter in Nd(3+)-doped materials. A comparison between these methods is done, showing that they are independent and provide similar results. Moreover, the advantages and applicability of each one are also discussed. The results point to these approaches as valuable alternative methods because of their sensitivity, which allows measurements to be performed in a pump-power regime without causing damage to the investigated material. (C) 2009 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Themean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions ( similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulose acetates with different degrees of substitution (DS, from 0.6 to 1.9) were prepared from previously mercerized linter cellulose, in a homogeneous medium, using N,N-dimethylacetamide/lithium chloride as a solvent system. The influence of different degrees of substitution on the properties of cellulose acetates was investigated using thermogravimetric analyses (TGA). Quantitative methods were applied to the thermogravimetric curves in order to determine the apparent activation energy (Ea) related to the thermal decomposition of untreated and mercerized celluloses and cellulose acetates. Ea values were calculated using Broido's method and considering dynamic conditions. Ea values of 158 and 187 kJ mol-1 were obtained for untreated and mercerized cellulose, respectively. A previous study showed that C6OH is the most reactive site for acetylation, probably due to the steric hindrance of C2 and C3. The C6OH takes part in the first step of cellulose decomposition, leading to the formation of levoglucosan and, when it is changed to C6OCOCH3, the results indicate that the mechanism of thermal decomposition changes to one with a lower Ea. A linear correlation between Ea and the DS of the acetates prepared in the present work was identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal behavior of two polymorphic forms of rifampicin was studied by DSC and TG/DTG. The thermoanalytical results clearly showed the differences between the two crystalline forms. Polymorph I was the most thermally stable form, the DSC curve showed no fusion for this species and the thermal decomposition process occurred around 245 ºC. The DSC curve of polymorph II showed two consecutive events, an endothermic event (Tpeak = 193.9 ºC) and one exothermic event (Tpeak = 209.4 ºC), due to a melting process followed by recrystallization, which was attributed to the conversion of form II to form I. Isothermal and non-isothermal thermogravimetric methods were used to determine the kinetic parameters of the thermal decomposition process. For non-isothermal experiments, the activation energy (Ea) was derived from the plot of Log β vs 1/T, yielding values for polymorph form I and II of 154 and 123 kJ mol-1, respectively. In the isothermal experiments, the Ea was obtained from the plot of lnt vs 1/T at a constant conversion level. The mean values found for form I and form II were 137 and 144 kJ mol-1, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quasiharmonic approximation (QHA), in its simplest form also called the statically constrained (SC) QHA, has been shown to be a straightforward method to compute thermoelastic properties of crystals. Recently we showed that for noncubic solids SC-QHA calculations develop deviatoric thermal stresses at high temperatures. Relaxation of these stresses leads to a series of corrections to the free energy that may be taken to any desired order, up to self-consistency. Here we show how to correct the elastic constants obtained using the SC-QHA. We exemplify the procedure by correcting to first order the elastic constants of MgSiO(3) perovskite and MgSiO(3) postperovskite, the major phases of the Earth's lower mantle. We show that this first-order correction is quite satisfactory for obtaining the aggregated elastic averages of these minerals and their velocities in the lower mantle. This type of correction is also shown to be applicable to experimental measurements of elastic constants in situations where deviatoric stresses can develop, such as in diamond-anvil cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, a finite element model of a half-sectioned molar tooth was developed in order to understand the thermal behavior of dental hard tissues (both enamel and dentin) under laser irradiation. The model was validated by comparing it with an in vitro experiment where a sound molar tooth was irradiated by an Er,Cr:YSGG pulsed laser. The numerical tooth model was conceived to simulate the in vitro experiment, reproducing the dimensions and physical conditions of the typical molar sound tooth, considering laser energy absorption and calculating the heat transfer through the dental tissues in three dimensions. The numerical assay considered the same three laser energy densities at the same wavelength (2.79 mu m) used in the experiment. A thermographic camera was used to perform the in vitro experiment, in which an Er, Cr: YSGG laser (2.79 mu m) was used to irradiate tooth samples and the infrared images obtained were stored and analyzed. The temperature increments in both the finite element model and the in vitro experiment were compared. The distribution of temperature inside the tooth versus time plotted for two critical points showed a relatively good agreement between the results of the experiment and model. The three dimensional model allows one to understand how the heat propagates through the dentin and enamel and to relate the amount of energy applied, width of the laser pulses, and temperature inside the tooth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2953526]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a closed form expression for the sum of all the infrared divergent contributions to the free energy of a gas of gravitons. An important ingredient of our calculation is the use of a gauge fixing procedure such that the graviton propagator becomes both traceless and transverse. This has been shown to be possible, in a previous work, using a general gauge fixing procedure, in the context of the lowest order expansion of the Einstein-Hilbert action, describing noninteracting spin-two fields. In order to encompass the problems involving thermal loops, such as the resummation of the free energy, in the present work, we have extended this procedure to the situations when the interactions are taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have obtained nonperturbative one-loop expressions for the mean-energy-momentum tensor and current density of Dirac's field on a constant electriclike back-round. One of the goals of this calculation is to give a consistent description of backreaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contribution,, are related to the Heisenberg-Euler Lagrangian. Then, we Study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the backreaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution synchrotron x-ray diffraction measurements were performed on single crystalline and powder samples of BiMn(2)O(5). A linear temperature dependence of the unit cell volume was found between T(N)=38 and 100 K, suggesting that a low-energy lattice excitation may be responsible for the lattice expansion in this temperature range. Between T(*)similar to 65 K and T(N), all lattice parameters showed incipient magnetoelastic effects, due to short-range spin correlations. An anisotropic strain along the a direction was also observed below T(*). Below T(N), a relatively large contraction of the a parameter following the square of the average sublattice magnetization of Mn was found, indicating that a second-order spin Hamiltonian accounts for the magnetic interactions along this direction. On the other hand, the more complex behaviors found for b and c suggest additional magnetic transitions below T(N) and perhaps higher-order terms in the spin Hamiltonian. Polycrystalline samples grown by distinct routes and with nearly homogeneous crystal structure above T(N) presented structural phase coexistence below T(N), indicating a close competition amongst distinct magnetostructural states in this compound.