19 resultados para Theory of quantized fields
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic universes is discussed in the context of f (R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the universe. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.
Resumo:
Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET(2), one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.
Resumo:
This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.
Resumo:
It is proven that the field equations of a previously studied metric nonsymmetric theory of gravitation do not admit any non-singular stationary solution which represents a field of non-vanishing total mass and non-vanishing total fermionic charge.
Resumo:
Microgauss magnetic fields are observed in all galaxies at low and high redshifts. The origin of these intense magnetic fields is a challenging question in astrophysics. We show here that the natural plasma fluctuations in the primordial Universe (assumed to be random), predicted by the fluctuation - dissipation theorem, predicts similar to 0.034 mu G fields over similar to 0.3 kpc regions in galaxies. If the dipole magnetic fields predicted by the fluctuation- dissipation theorem are not completely random, microgauss fields over regions greater than or similar to 0.34 kpc are easily obtained. The model is thus a strong candidate for resolving the problem of the origin of magnetic fields in less than or similar to 10(9) years in high redshift galaxies.
Resumo:
Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.
Resumo:
In this work, we report a density functional theory study of nitric oxide (NO) adsorption on close-packed transition metal (TM) Rh(111), Ir(111), Pd(111) and Pt(111) surfaces in terms of adsorption sites, binding mechanism and charge transfer at a coverage of Theta(NO) = 0.25, 0.50, 0.75 monolayer (ML). Based on our study, an unified picture for the interaction between NO and TM(111) and site preference is established, and valuable insights are obtained. At low coverage (0.25 ML), we find that the interaction of NO/TM(111) is determined by an electron donation and back-donation process via the interplay between NO 5 sigma/2 pi* and TM d-bands. The extent of the donation and back-donation depends critically on the coordination number (adsorption sites) and TM d-band filling, and plays an essential role for NO adsorption on TM surfaces. DFT calculations shows that for TMs with high d-band filling such as Pd and Pt, hollow-site NO is energetically the most favorable, and top-site NO prefers to tilt away from the normal direction. While for TMs with low d-band filling (Rh and Ir), top-site NO perpendicular to the surfaces is energetically most favorable. Electronic structure analysis show that irrespective of the TM and adsorption site, there is a net charge transfer from the substrate to the adsorbate due to overwhelming back-donation from the TM substrate to the adsorbed NO molecules. The adsorption-induced change of the work function with respect to bare surfaces and dipole moment is however site dependent, and the work function increases for hollow-site NO, but decreases for top-site NO, because of differences in the charge redistribution. The interplay between the energetics, lateral interaction and charge transfer, which is element dependent, rationalizes the structural evolution of NO adsorption on TM(111) surfaces in the submonolayer regime.
Resumo:
Discussion opposing the Theory of the Firm to the Theory of Stakeholders are contemporaneous and polemical. One focal point of such debates refers to which objective-function companies, should choose, whether that of the shareholders or that of the stakeholders, and whether it is possible to opt for both simultaneously. Several empirical studies. have attempted-to test a possible correlation between both functions, and there has not been any consensus-so far. The objective of the present research is to examine a gap in such discussions: is there (or not) a subordination of the stakeholders` objective-function to that of the shareholders? The research is empirical,and analytical and employs quantitative methods. Hypotheses were tested and data analyzed by using non-parametrical (chi-square test) and parametrical procedures (frequency. correlation `coefficient). Secondary data was collected from he Economitica database and from the Brazilian Institute of Social and-Economic Analyses (IBASE) website, relative to public companies that have published their Social Balance Statements following the IBASE model from 1999 to 2006, whose sample amounted to 65 companies; In order to assess the objective-function of shareholders a proxy was created based on the following three indices: ROE (return on equity), EnterpriseValue and Tobin`s Q. In order to assess the objective-function of stakeholders a proxy was created by employing the following IBASE social balance indices: internal ones (ISI), external ones (ISE), and environmental ones (IAM). The results have shown no evidence of subordination of stakeholders` objective-function to that of the shareholders in analyzed companies, negating initial expectations and calling for deeper investigation of results. Its main conclusion, which states that the attempted subordination does not take place, is limited to the sample herein investigated and calls for ongoing research aiming at improvements which may lead to sample enlargement and, as a consequence, may make feasible the application of other statistical techniques which may yield a more thorough, analysis of the studied phenomehon.
Resumo:
This note is motivated from some recent papers treating the problem of the existence of a solution for abstract differential equations with fractional derivatives. We show that the existence results in [Agarwal et al. (2009) [1], Belmekki and Benchohra (2010) [2], Darwish et al. (2009) [3], Hu et al. (2009) [4], Mophou and N`Guerekata (2009) [6,7], Mophou (2010) [8,9], Muslim (2009) [10], Pandey et al. (2009) [11], Rashid and El-Qaderi (2009) [12] and Tai and Wang (2009) [13]] are incorrect since the considered variation of constant formulas is not appropriate. In this note, we also consider a different approach to treat a general class of abstract fractional differential equations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
New results for attenuation and damping of electromagnetic fields in rigid conducting media are derived under the conjugate influence of inertia due to charge carriers and displacement current. Inertial effects are described by a relaxation time for the current density in the realm of an extended Ohm`s law. The classical notions of poor and good conductors are rediscussed on the basis of an effective electric conductivity, depending on both wave frequency and relaxation time. It is found that the attenuation for good conductors at high frequencies depends solely on the relaxation time. This means that the penetration depth saturates to a minimum value at sufficiently high frequencies. It is also shown that the actions of inertia and displacement current on damping of magnetic fields are opposite to each other. That could explain why the classical decay time of magnetic fields scales approximately as the diffusion time. At very small length scales, the decay time could be given either by the relaxation time or by a fraction of the diffusion time, depending on whether inertia or displacement current, respectively, would prevail on magnetic diffusion.
Resumo:
The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.
Resumo:
We propose an alternative formulation of the Standard Model which reduces the number of free parameters. In our framework, fermionic fields are assigned to fundamental representations of the Lorentz and the internal symmetry groups, whereas bosonic field variables transform as direct products of fundamental representations of all symmetry groups. This allows us to reduce the number of fundamental symmetries. We formulate the Standard Model by considering the SU(3) and SU(2) symmetry groups as the underlying symmetries of the fundamental interactions. This allows us to suggest a model, for the description of the interactions of the intermediate bosons among themselves and interactions of fermions, that makes use of just two parameters. One parameter characterizes the symmetric phase, whereas the other parameter (the asymmetry parameter) gives the breakdown strength of the symmetries. All coupling strengths of the Standard Model are then derived in terms of these two parameters. In particular, we show that all fermionic electric charges result from symmetry breakdown.
Resumo:
The behaviour of interacting ultracold Rydberg atoms in both constant electric fields and laser fields is important for designing experiments and constructing realistic models of them. In this paper, we briefly review our prior work and present new results on how electric fields affect interacting ultracold Rydberg atoms. Specifically, we address the topics of constant background electric fields on Rydberg atom pair excitation and laser-induced Stark shifts on pair excitation.