35 resultados para Termoeletricidade de concentração solar
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ozone and inhalable particulate matter are the major air pollutants in the Metropolitan Area of São Paulo, Brazil, a region that has more than 19 million inhabitants and approximately 7 million registered vehicles. Proximity of roadways, adjacent land use, and local circulation are just some of the factors that can affect the results of monitoring of pollutant concentrations. The so-called weekend effect (higher ozone concentrations on weekends than on weekdays) might be related to the fact that concentrations of ozone precursors, such as nitrogen oxides (NOx) and Non Methane-Hydrocarbon (NMHC), are relatively lower on weekends. This phenomenon has been reported in some areas of the United States since the 1970s. The differences between the concentrations of ozone in period of weekend and weekday, were obtained from analysis of data hourly average of CETESB for 2004, studied the precursors to the formation of troposphere ozone, the meteorological variables and traffic profile for RMSP. Because of the proximity to sources of emissions from the station Pinheiros showed higher concentrations of NO and NO² and greater variations to the periods weekend and weekday. With fewer vehicles circulating during the weekend, and consequently less emission of pollutants, it has cleaner air and less concentration of NO and NO², there is the ideal setting to the formation of troposphere ozone, despite the lower concentration of NO². The proximity with the source emissions, aided by the increased availability of solar radiation and the presence of ozone precursors, were factors conditions for the occurrence of weekend effect.
Resumo:
Since 2000, spore dosimetry and spectral photometry have been performed in parallel at the Southern Space Observatory, São Martinho da Serra (Southern Brazil). A comparative study involving data from Punta Arenas - Chile (53.2º S), São Martinho da Serra (29.5º S), Padang - Indonesia (0.9ºS), Brussels - Belgium (50.9º N) and Kiyotake - Japan (31.9º N) from 2000 to 2006 is presented. The Spore Inactivation Doses presented the higher values in summer (973 ± 73 for Punta Arenas and 4,369 ± 202 for São Martinho da Serra, as well 1,402 ± 170 and 3,400 ± 1,674 for Brussels and Kiyotake, respectively). The simplicity, robustness and high resistance of bacterial spores makes the biosensor an potential biological tool for UV-B monitoring.
Resumo:
Soil organic matter (SOM) plays an important role in physical, chemical and biological properties of soil. Therefore, the amount of SOM is important for soil management for sustainable agriculture. The objective of this work was to evaluate the amount of SOM in oxisols by different methods and compare them, using principal component analysis, regarding their limitations. The methods used in this work were Walkley-Black, elemental analysis, total organic carbon (TOC) and thermogravimetry. According to our results, TOC and elemental analysis were the most satisfactory methods for carbon quantification, due to their better accuracy and reproducibility.
Resumo:
This work describes CE preconcentration strategies based on the effect of manipulation of the disperse/secondary velocity. Introduced by Terabe et al. in 1984, micellar electrokinetic chromatography is a powerful separation approach that increases the usage of electrokinetic phenomena for the separation of nonionic compounds. The main disadvantage of MEKC is the low concentration sensitivity associated with the limited optical path length for on-capillary photometric detection and the limited volume of sample solution that can be injected. This paper compiles on-line concentration strategies for neutral analytes by sample stacking and sweeping in micellar electrokinetic chromatography.
Resumo:
Capillary electrophoresis has become a well-established and routine-based separation technique. It is based on the differences between charged analyte mobility in aqueous or organic electrolytes. Its major limitation is the sensitivity due to small sample injection volumes and the narrow diameter of the capillaries, especially when UV detection is used. There are a number of ways to increase the concentration sensitivity. This report shows some on-line preconcentration strategies to perform it in free solution capillary electrophoresis that are based on manipulation of the analyte electrophoretic velocity during the sample introduction (stacking, field amplification and transient isotachophoresis).
Resumo:
O artigo visa analisar a concentração de fluoreto na água para consumo humano, considerando o balanço entre benefícios e riscos à saúde, e produzir subsídios para atualização da legislação brasileira. Estudos de revisão sistemática, documentos oficiais e dados meteorológicos foram examinados. As temperaturas nas capitais brasileiras indicam que o fluoreto deveria variar de 0,6 a 0,9 mg/L para prevenir cárie dentária. Concentração de fluoreto natural de 1,5 mg/L é tolerável para consumo no Brasil se não houver tecnologia de custo-benefício aceitável para ajuste/remoção do seu excesso. A ingestão diária de água com fluoreto em concentração > 0,9 mg/L representa risco à dentição em menores de oito anos de idade e os consumidores deveriam ser expressamente informados desse risco. Considerando a expansão do programa nacional de fluoretação da água para regiões de clima tipicamente tropical, deve-se revisar a Portaria 635/75, relacionada ao fluoreto adicionado às águas de abastecimento público.
Resumo:
Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r = 0.95 R(circle dot) at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions. This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of the meridional flow on the poloidal component of the magnetic field and the turbulent pumping positively contributes to wash out this imprint.
Resumo:
We present a re-analysis of the Geneva-Copenhagen survey, which benefits from the infrared flux method to improve the accuracy of the derived stellar effective temperatures and uses the latter to build a consistent and improved metallicity scale. Metallicities are calibrated on high-resolution spectroscopy and checked against four open clusters and a moving group, showing excellent consistency. The new temperature and metallicity scales provide a better match to theoretical isochrones, which are used for a Bayesian analysis of stellar ages. With respect to previous analyses, our stars are on average 100 K hotter and 0.1 dex more metal rich, which shift the peak of the metallicity distribution function around the solar value. From Stromgren photometry we are able to derive for the first time a proxy for [alpha/Fe] abundances, which enables us to perform a tentative dissection of the chemical thin and thick disc. We find evidence for the latter being composed of an old, mildly but systematically alpha-enhanced population that extends to super solar metallicities, in agreement with spectroscopic studies. Our revision offers the largest existing kinematically unbiased sample of the solar neighbourhood that contains full information on kinematics, metallicities, and ages and thus provides better constraints on the physical processes relevant in the build-up of the Milky Way disc, enabling a better understanding of the Sun in a Galactic context.
Resumo:
The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismology and interferometry on the brightest of them: 18 Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4+/-0.3 mu Hz and angular and linear radiuses of 0.6759 +/- 0.0062 mas and 1.010 +/- 0.009 R(circle dot) were estimated. We used these values to derive the mass of the star, 1.02 +/- 0.03 M(circle dot).
Resumo:
Aims. We determine the age and mass of the three best solar twin candidates in open cluster M 67 through lithium evolutionary models. Methods. We computed a grid of evolutionary models with non-standard mixing at metallicity [Fe/H] = 0.01 with the Toulouse-Geneva evolution code for a range of stellar masses. We estimated the mass and age of 10 solar analogs belonging to the open cluster M 67. We made a detailed study of the three solar twins of the sample, YPB637, YPB1194, and YPB1787. Results. We obtained a very accurate estimation of the mass of our solar analogs in M 67 by interpolating in the grid of evolutionary models. The three solar twins allowed us to estimate the age of the open cluster, which is 3.87(-0.66)(+0.55) Gyr, which is better constrained than former estimates. Conclusions. Our results show that the 3 solar twin candidates have one solar mass within the errors and that M 67 has a solar age within the errors, validating its use as a solar proxy. M 67 is an important cluster when searching for solar twins.
Resumo:
We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm(-3). It orbits a G0V star with T(eff) = 5 945 K, M(*) = 1.09 M(circle dot), R(*) = 1.01 R(circle dot), solar metallicity, a lithium content of +1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 M(circle plus).
Resumo:
Aims. Solar colors have been determined on the uvby-beta photometric system to test absolute solar fluxes, to examine colors predicted by model atmospheres as a function of stellar parameters (T(eff), log g, [Fe/H]), and to probe zero-points of T(eff) and metallicity scales. Methods. New uvby-beta photometry is presented for 73 solar-twin candidates. Most stars of our sample have also been observed spectroscopically to obtain accurate stellar parameters. Using the stars that most closely resemble the Sun, and complementing our data with photometry available in the literature, the solar colors on the uvby-beta system have been inferred. Our solar colors are compared with synthetic solar colors computed from absolute solar spectra and from the latest Kurucz (ATLAS9) and MARCS model atmospheres. The zero-points of different T(eff) and metallicity scales are verified and corrections are proposed. Results. Our solar colors are (b - y)(circle dot) = 0.4105 +/- 0.0015, m(1,circle dot) = 0.2122 +/- 0.0018, c(1,circle dot) = 0.3319 +/- 0.0054, and beta(circle dot) = 2.5915 +/- 0.0024. The (b - y)(circle dot) and m(1,circle dot) colors obtained from absolute spectrophotometry of the Sun agree within 3-sigma with the solar colors derived here when the photometric zero-points are determined from either the STIS HST observations of Vega or an ATLAS9 Vega model, but the c(1,circle dot) and beta(circle dot) synthetic colors inferred from absolute solar spectra agree with our solar colors only when the zero-points based on the ATLAS9 model are adopted. The Kurucz solar model provides a better fit to our observations than the MARCS model. For photometric values computed from the Kurucz models, (b - y)(circle dot) and m(1,circle dot) are in excellent agreement with our solar colors independently of the adopted zero-points, but for c(1,circle dot) and beta circle dot agreement is found only when adopting the ATLAS9 zero-points. The c(1,circle dot) color computed from both the Kurucz and MARCS models is the most discrepant, probably revealing problems either with the models or observations in the u band. The T(eff) calibration of Alonso and collaborators has the poorest performance (similar to 140 K off), while the relation of Casagrande and collaborators is the most accurate (within 10 K). We confirm that the Ramirez & Melendez uvby metallicity calibration, recommended by Arnadottir and collaborators to obtain [Fe/H] in F, G, and K dwarfs, needs a small (similar to 10%) zero-point correction to place the stars and the Sun on the same metallicity scale. Finally, we confirm that the c(1) index in solar analogs has a strong metallicity sensitivity.
Resumo:
We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M(*) = 1.08 +/- 0.08 M(circle dot), R(*) = 1.1 +/- 0.1 R(circle dot), T(eff) = 5675 +/- 80 K). This new planet, CoRoT-12b, has a mass of 0.92 +/- 0.07 M(Jup) and a radius of 1.44 +/- 0.13 R(Jup). Its low density can be explained by standard models for irradiated planets.
Resumo:
Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmid DNA to artificial UV lamps and sunlight. The determination and quanti. cation of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmid DNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.
Resumo:
A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene) (P3HT) and the fullerene [6,6]-phenyl C(61)-butyric (PCBM) was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs) with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.