17 resultados para Teranostica,drug delivery,ipertermia,nanoparticelle magnetiche

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, native xyloglucan was extracted from Tamarindus indica seeds (XGT), and its properties in phosphate buffer solution (PBS) were evaluated in comparison with a commercial tamarind kernel powder (TKP). The physico-chemical characteristics of the polysaccharides such as molar mass, critical concentration and intrinsic viscosity were determined. Furthermore, using spectroscopic and microscopy techniques, it was observed that the XGs tested can be considered macromolecules able to aggregate as nano-entities of 60-140 nm. The XGT tended to an ordered and compact spherical conformation determined by the Huggins constant, circular dichroism, atomic force microscopy and transmission electron microscopy. After the determination of the properties in PBS the XGs, at concentrations of 25% above their critical aggregation concentration, were used to encapsulate camptothecin, an anti-cancer drug. The XGT sample showed an encapsulation efficiency of 42% and first-order drug delivery kinetics. These results demonstrated the importance of knowledge of the physico-chemical properties of polysaccharides, for example, to better conduct their biotechnological applications as drug carriers. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes have been used as adjuvants since 1974. One major limitation for the use of liposomes in oral vaccines is the lipid structure instability caused by enzyme activities. Our aim was to combine liposomes that could encapsulate antigens (i.e., Dtxd, diphtheria toxoid) with chitosan, which protects the particles and promotes mucoadhesibility. We employed physical techniques to understand the process by which liposomes (SPC: Cho, 3: 1) can be sandwiched with chitosan (Chi) and stabilized by PVA (poly-vinylic alcohol), which are biodegradable, biocompatible polymers. Round, smooth-surfaced particles of REVs-Chi (reversed-phase vesicles sandwiched by Chi) stabilized by PVA were obtained. The REVs encapsulation efficiencies (Dtxd was used as the antigen) were directly dependent on the Chi and PVA present in the formulation. Chi adsorption on the REVs surface was accompanied by an increase of zeta-potential. In contrast, PVA adsorption on the REVs-Chi surface was accompanied by a decrease of zeta-potential. The presence of Dtxd increased the Chi surface-adsorption efficiency. The PVA affinity by mucine was 2,000 times higher than that observed with Chi alone and did not depend on the molecule being in solution or adsorbed on the liposomal surface. The liberation of encapsulated Dtxd was retarded by encapsulation within REVs-Chi-PVA. These results lead us to conclude that these new, stabilized particles were able to be adsorbed by intestinal surfaces, resisted degradation, and controlled antigen release. Therefore, REVs-Chi-PVA particles can be used as an oral delivery adjuvant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing interest in lipid nanoparticles because of their suitability for several administration routes. Thus, it becomes even more relevant the physicochemical characterization of lipid materials with respect to their polymorphism, lipid miscibility and stability, as well as the assessment of the effect of surfactant on the type and structure of these nanoparticles. This work focuses on the physicochemical characterization of lipid matrices composed of pure stearic acid or of mixtures of stearic acid-capric/caprylic triglycerides, for drug delivery. The lipids were analyzed by Differential Scanning Calorimetry (DSC), Wide Angle X-ray Diffraction (WAXD), Polarized Light Microscopy (PLM) and hydrophilic-lipophilic balance (HLB) in combination with selected surfactants to determine the best solid-to-liquid ratio. Based on the results obtained by DSC and WAXD, the selected qualitative and quantitative composition contributed for the production of stable nanoparticles, since the melting and the tempering processes provided important information on the thermodynamic stability of solid lipid matrices. The best HLB value obtained for stearic acid-capric/caprylic triglycerides was 13.8, achieved after combining these lipids with accepted surfactants (trioleate sorbitan and polysorbate 80 in the ratio of 10:90). The proposed combinations were shown useful to obtain a stable emulsion to be used as intermediate form for the production of lipid nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. Experimental approach: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund`s adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 mu g, 5 mu g, 10 mu g, 20 mu g or 40 mu g center dot 50 mu L-1). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. Key results: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) was more effective than `free` P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 mu g center dot 50 mu L-1) were most effective. Treatment with P10 emulsified in Freund`s adjuvant (20 mu g center dot 50 mu L-1) or P10 entrapped within PLGA (1 mu g center dot 50 mu L-1) were accompanied by high levels of interferon-gamma in lung. Conclusions and implications: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of liposomes to encapsulate materials has received widespread attention for drug delivery, transfection, diagnostic reagent, and as immunoadjuvants. Phospholipid polymers form a new class of biomaterials with many potential applications in medicine and research. Of interest are polymeric phospholipids containing a diacetylene moiety along their acyl chain since these kinds of lipids can be polymerized by Ultra-Violet (UV) irradiation to form chains of covalently linked lipids in the bilayer. In particular the diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) can form intermolecular cross-linking through the diacetylenic group to produce a conjugated polymer within the hydrocarbon region of the bilayer. As knowledge of liposome structures is certainly fundamental for system design improvement for new and better applications, this work focuses on the structural properties of polymerized DC8,9PC:1,2-dimyristoyl-sn-glycero-3-phusphocholine (DMPC) liposomes. Liposomes containing mixtures of DC8,9PC and DMPC, at different molar ratios, and exposed to different polymerization cycles, were studied through the analysis of the electron spin resonance (ESR) spectra of a spin label incorporated into the bilayer, and the calorimetric data obtained from differential scanning calorimetry (DSC) studies. Upon irradiation, if all lipids had been polymerized, no gel-fluid transition would be expected. However, even samples that went through 20 cycles of UV irradiation presented a DSC band, showing that around 80% of the DC8,9PC molecules were not polymerized. Both DSC and ESR indicated that the two different lipids scarcely mix at low temperatures, however few molecules of DMPC are present in DC8,9PC rich domains and vice versa. UV irradiation was found to affect the gel fluid transition of both DMPC and DC8,9PC rich regions, indicating the presence of polymeric units of DC8,9PC in both areas, A model explaining lipids rearrangement is proposed for this partially polymerized system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method employed to incorporate guest molecules onto phospholipid Langmuir monolayers plays an important role in the interaction between the monolayer and the guest molecules. In this paper, we show that for the interaction between horseradish peroxidase (HRP) and a monolayer of dipalmitoylphosphatidylglycerol (DPPG) does depend on the method of HRP incorporation. The surface pressure isotherms of the mixed DPPG/HRP monolayers, for instance, were less expanded when the two materials were co-spread than in the case where HRP was injected into the subphase. Therefore, the method for incorporation affected not only the penetration of HRP but also the changes in molecular packing caused to the DPPG monolayer. With experiments with the monolayer on a pendant drop, we observed that the incorporation of HRP affects the dynamic elasticity of the DPPG monolayer, on a way that varies with the surface pressure. At low pressures, HRP causes the monolayer to be more rigid, while the converse is true for surface pressures above 8 mN/m. Taken all the results together, we conclude that HRP is more efficiently incorporated if injected into the subphase on which a DPPG monolayer had been spread and that the interaction between HRP and DPPG is maintained even at high surface pressures. This is promising for the possible transfer of mixed films onto solid substrates and for applications in biosensors and drug delivery systems. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The controlled release of drugs can be efficient if a suitable encapsulation procedure is developed, which requires biocompatible materials to hold and release the drug. In this study, a natural rubber latex (NRL) membrane is used to deliver metronidazole (MET), a powerful antiprotozoal agent. MET was found to be adsorbed on the NRL membrane, with little or no incorporation into the membrane bulk, according to energy dispersive X-ray spectroscopy. X-ray diffraction and FTIR spectroscopy data indicated that MET retained its structural and spectroscopic properties upon encapsulation in the NRL membrane, with no molecular-level interaction that could alter the antibacterial activity of MET. More importantly, the release time of MET in a NRL membrane in vitro was increased from the typical 6-8 h for oral tablets or injections to ca. 100 h. The kinetics of the drug release could be fitted with a double exponential function, with two characteristic times of 3.6 and 29.9 h. This is a demonstration that the induced angiogenesis known to be provided by NRL membranes can be combined with a controlled release of drugs, whose kinetics can be tailored by modifying experimental conditions of membrane fabrication for specific applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes have been applied to many fields as nanocarriers, especially in drug delivery as active molecules may be entrapped either in their aqueous interior or onto the hydrophobic surface. In this paper we describe the fabrication of layer-by-layer (LbL) films made with liposomes incorporating the anti-inflammatory ibuprofen. The liposomes were made with dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl glycerol (DPPG) and palmitoyl oleoyl phosphatidyl glycerol (POPG). LbL films were assembled via alternate adsorption of the polyamidoamine dendrimer (PAMAM), generation 4, and liposomes containing ibuprofen. According to dynamic light scattering measurements, the incorporation of ibuprofen caused DPPC and DPPG liposonnes to become more stable, with a decrease in diameter from 140 to 74 nm and 132 to 63 nm, respectively. In contrast, liposomes from POPG became less stable, with an increase in size from 110 to 160 nm after ibuprofen incorporation. These results were confirmed by atomic force microscopy images of LbL films, which showed a large tendency to rupture for POPG liposomes. Film growth was monitored using nanogravimetry and UV-Vis spectroscopy, indicating that growth stops after 10 bilayers. The release of ibuprofen obtained with fluorescence measurements was slower for the liposomes, with decay times of 9.2 and 8.5 h for DPPG and POPG liposomes, respectively, than for the free drug with a decay time of 5.2 h. Ibuprofen could also be released from the LbL films made with DPPG and POPG liposomes, which is promising for further uses in patches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrostatic layer-by-layer technique has been exploited as an useful strategy for fabrication of nanostructured thin films, in which specific properties can be controlled at the molecular level. Ferrofluids consist of a colloidal suspension of magnetic grains (with only a few nanometers of diameter) with present interesting physical properties and applications, ranging from telecommunication to drug delivery systems. In this article, we developed a new strategy to manipulate ferrofluids upon their immobilization in nanostructured layered films in conjunction with conventional polyelectrolytes using the layer-by-layer technique. We investigated the morphological, optical, and magnetic properties of the immobilized ferrofluid as a function of number of bilayers presented in the films. Ferrofluid/polyelectrolyte multilayers homogeneously covered the substrates surface, and the magnetic and optical properties of films exhibited a linear dependence on the number of bilayers adsorbed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lectins have been classified into a structurally diverse group of proteins that bind carbohydrates and glycoconjugates with high specificity. They are extremely useful molecules in the characterization of saccharides, as drug delivery mediators, and even as cellular surface makers. In this study, we present camptosemin, a new lectin from Camptosema ellipticum. It was characterized as an N-acetyl-d-galactosamine-binding homo-tetrameric lectin, with a molecular weight around 26 kDa/monomers. The monomers were stable over a wide range of pH values and exhibited pH-dependent oligomerization. Camptosemin promoted adhesion of breast cancer cells and hemagglutination, and both activities were inhibited by its binding of sugar. The stability and unfolding/folding behavior of this lectin was characterized using fluorescence and far-UV circular dichroism spectroscopies. The results indicate that chemical unfolding of camptosemin proceeds as a two-state monomer-tetramer process. In addition, small-angle X-ray scattering shows that camptosemin behaves as a soluble and stable homo-tetramer molecule in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial vesicles or liposomes composed of lipid bilayers have been widely exploited as building blocks for artificial membranes, in attempts to mimic membrane interaction with drugs and proteins and to investigate drug delivery processes. In this study we report on the immobilization of liposomes of 1,2-dipalmitoyi-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) in layer-by-layer (LbL) films, alternated with poly (amidoamine) G4 (PAMAM) dendrimer layers. The average size of the liposomes in solution was 120 nm as determined by dynamic light scattering, with their spherical shape being inferred from scanning electron microscopy (SEM) in cast films. LbL films containing up to 20 PAMAM/DPPG bilayers were assembled onto glass and/or silicon wafer substrates. The growth of the multilayers was achieved by alternately immersing the substrates into the PAMAM and DPPG solutions for 5 and 10 min, respectively. The formation of PAMAM/DPPG liposome multilayers and its ability to interact with BSA were confirmed by Fourier transform infrared spectroscopy (FTIR). The structural features and film thickness were obtained using X-ray diffraction and surface plasmon resonance (SPR). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional venom immunotherapy uses injections of whole bee venom in buffer or adsorbed in Al (OH)(3) in an expensive, time-consuming way. New strategies to improve the safety and efficacy of this treatment with a reduction of injections would, therefore, be of general interest. It would improve patient compliance and provide socio-economic benefits. Liposomes have a long tradition in drug delivery because they increase the therapeutic index and avoid drug degradation and secondary effects. However, bee venom melittin (Mel) and phospholipase (PLA(2)) destroy the phospholipid membranes. Our central idea was to inhibit the PLA(2) and Mel activities through histidine alkylation and or tryptophan oxidation (with pbb, para-bromo-phenacyl bromide, and/or NBSN-bromosuccinimide, respectively) to make their encapsulations possible within stabilized liposomes. We strongly believe that this formulation will be nontoxic but immunogenic. In this paper, we present the whole bee venom conformation characterization during and after chemical modification and after interaction with liposome by ultraviolet, circular dichroism, and fluorescence spectroscopies. The PLA(2) and Mel activities were, measured indirectly by changes in turbidity at 400(nm), rhodamine leak-out, and hemolysis. The native whole bee venom (BV) presented 78.06% of alpha-helical content. The alkylation (A-BV) and succynilation (S-BV) of BV increased 0.44 and 0.20% of its alpha-helical content. The double-modified venom (S-A-BV) had a 0.74% increase of alpha-helical content. The BV chemical modification induced another change on protein conformations observed by Trp that became buried with respect to the native whole BV. It was demonstrated that the liposomal membranes must contain pbb (SPC:Cho:pbb, 26:7:1) as a component to protect them from aggregation and/or fusion. The membranes containing pbb maintained the same turbidity (100%) after incubation with modified venom, in contrast with pbb-free membranes that showed a 15% size decrease. This size decrease was interpreted as membrane degradation and was corroborated by a 50% rhodamine leak-out. Another fact that confirmed our interpretation was the observed 100% inhibition of the hemolytic activity after venom modification with pbb and NBS (S-A-BV). When S-A-BV interacted with liposomes, other protein conformational changes were observed and characterized by the increase of 1.93% on S-A-BV alpha-helical content and the presence of tryptophan residues in a more hydrophobic environment. In other words, the S-A-BV interacted with liposomal membranes, but this interaction was not effective to cause aggregation, leak-out, or fusion. A stable formulation composed by S-A-BV encapsulated within liposomes composed by SPC:Cho:pbb, at a ratio of 26:7:1, was devised. Large unilamellar vesicles of 202.5 nm with a negative surface charge (-24.29 mV) encapsulated 95% of S-A-BV. This formulation can, now, be assayed on VIT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between cationic bilayer fragments and a model oligonucleotide was investigated by differential scanning calorimetry, turbidimetry, determination of excimer to monomer ratio of 2-(10-(1-pyrene)-decanoyl)-phosphatidyl-choline in bilayer fragment dispersions and dynamic light scattering for sizing and zeta-potential analysis. Salt (Na(2)HPO(4)), mononucleotide (2`-deoxyadenosine-5`-monophosphate) or poly (dA) oligonucleotide (3`-AAA AAA AAA A-5`) affected structure and stability of dioctadecyldimethylammonium bromide bilayer fragments. Oligonucleotide and salt increased bilayer packing due to bilayer fragment fusion. Mononucleotide did not reduce colloid stability or did not cause bilayer fragment fusion. Charge neutralization of bilayer fragments by poly (dA) at 1:10 poly (dA):dioctadecyldimethylammonium bromide molar ratio caused extensive aggregation, maximal size and zero of zeta-potential for the assemblies. Above charge neutralization, assemblies recovered colloid stability due to charge overcompensation. For bilayer fragments/poly (dA), the nonmonotonic behavior of colloid stability as a function of poly (dA) concentration was unique for the oligonucleotide and was not observed for Na(2)HPO(4) or 2`-deoxyadenosine-5`-monophosphate. For the first time, such interactions between cationic bilayer fragments and mono- or oligonucleotide were described in the literature. Bilayer fragments/oligonucleotide assemblies may find interesting applications in drug delivery. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the synthesis and structural characterization of a series of polyacrylamide hydrogels with different degrees of reticulation are reported. Although the Equilibrium Swelling Theory was recognized as a simple and reliable tool for the determination of structural hydrogels network parameters like equilibrium degree of swelling, cross-link ratio and mesh size, this is the first application of this methodology for polyacrylamide hydrogels. By changing the total monomer content in the synthesis solution (%T) from 5 to 30%, at a fixed value of cross-linker content in the total monomer amount (%C) of 5%, the final parameter obtained, the mesh size, can be tuned from 2 to 0.3 nm. It was also possible to change the mesh size (0.19-0.35) by varying %C from 5 to 12% (at %T = 20%). Scanning Electron Microscopy images for the most different formulations are shown and corroborate data obtained from the theory. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal analysis has been widely used for obtaining information about drug-polymer interactions and for pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles Of Poly (D,L-lactide-co-glycolide) (PLGA) containing triamcinolone (TR) in various drug:polymer ratios were produced by spray drying. The main purpose of this study was to study the effect of the spray-drying process not only on the drug-polymer interactions but also on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG), X-ray analysis (XRD), and infrared spectroscopy (IR). The evaluation of drug-polymer interactions and the pre-formulation studies were assessed using the DSC, TG and DTG, and IR. The quantitative analysis of drugs entrapped in PLGA microparticles was performed by the HPLC method. The results showed high levels of drug-loading efficiency for all used drug: polymer ratio, and the polymorph used for preparing the microparticles was the form B. The DSC and TG/DTG profiles for drug-loaded microparticles were very similar to those for the physical mixtures of the components. Therefore, a correlation between drug content and the structural and thermal properties of drug-loaded PLGA microparticles was established. These data indicate that the spray-drying technique does not affect the physico-chemical stability of the microparticle components. These results are in agreement with the IR analysis demonstrating that no significant chemical interaction occurs between TR and PLGA in both physical mixtures and microparticles. The results of the X-ray analysis are in agreement with the thermal analysis data showing that the amorphous form of TR prevails over a small fraction of crystalline phase of the drug also present in the TR-loaded microparticles. From the pre-formulation studies, we have found that the spray-drying methodology is an efficient process for obtaining TR-loaded PLGA microparticles. (C) 2008 Elsevier B.V. All rights reserved.