39 resultados para Temperature changes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66ºC). The LED unit produced the lowest temperature increase (0.29±0.13ºC); but there was no significant difference between LED unit and LED-laser system (0.35±0.15ºC) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64ºC), and LED-laser system the lowest (0.33±0.12ºC); however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: The purpose of this study was to assess the efficacy of Er:YAG laser energy for composite resin removal and the influence of pulse repetition rate on the thermal alterations occurring during laser ablation. Materials and Methods: Composite resin filling was placed in cavities (1.0 mm deep) prepared in bovine teeth and the specimens were randomly assigned to five groups according to the technique used for composite filling removal. In group I (controls), the restorations were removed using a high-speed diamond bur. In the other groups, the composite fillings were removed using an Er: YAG laser with different pulse repetition rates: group 2-2 Hz; group 3-4 Hz; group 4-6 Hz; and group 5-10 Hz. The time required for complete removal of the restorative material and the temperature changes were recorded. Results: Temperature rise during composite resin removal with the Er: YAG laser occurred in the substrate underneath the restoration and was directly proportional to the increase in pulse repetition rate. None of the groups had a temperature increase during composite filling removal of more than 5.6 degrees C, which is considered the critical point above which irreversible thermal damage to the pulp may result. Regarding the time for composite filling removal, all the laser-ablated groups (except for group 5 [10 Hz]) required more time than the control group for complete elimination of the material from the cavity walls. Conclusion: Under the tested conditions, Er: YAG laser irradiation was efficient for composite resin ablation and did not cause a temperature increase above the limit considered safe for the pulp. Among the tested pulse repetition rates, 6 Hz produced minimal temperature change compared to the control group (high-speed bur), and allowed composite filling removal within a time period that is acceptable for clinical conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a temperature- dependent Hartree- Fock- Bogoliubov- Popov theory to analyze the properties of the equilibrium states of an homogeneous mixture of bosonic atoms in two different hyperfine states and in the presence of an internal Josephson coupling. In our calculation we show that the bistable structure of the equilibrium states at zero temperature changes when we increase the temperature of the system. We investigate two mechanisms of the disappearance of bistability. In one, near the collapse of one of the equilibrium states, the acoustical branch becomes unstable and the gap of the optical branch goes to zero. In the other, there is no divergent behavior of the system and bistability disappears at a temperature in which the two equilibrium states merge at a zero- population fraction imbalance. When we further increase the temperature, this state remains as a unique equilibrium configuration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To investigate the effects of intrapulpal temperature changes induced by a quartz tungsten halogen (QTH) and a light emitting diode (LED) curing units on the metabolism of odontoblast-like cells. Methods: Thirty-six 0.5 mm-thick dentin discs obtained from sound human teeth were randomly assigned into three groups: QTH, LED and no light (control). After placement of the dentin discs in pulp chamber devices, a thermistor was attached to the pulpal surface of each disc and the light sources were applied on the occlusal surface. After registering the temperature change, odontoblast-like cells MDPC-23 were seeded on the pulpal side of the discs and the curing lights were again applied. Cell metabolism was evaluated by the MTT assay and cell morphology was assessed by SEM. Results: In groups QTH and LED the intrapulpal temperature increased by 6.4 degrees C and 3.4 degrees C, respectively. The difference between both groups was statistically significant (Mann-Whitney; P< 0.05). QTH and LED reduced the cell metabolism by 36.4% and 33.4%, respectively. Regarding the cell metabolism, no statistically significant difference was observed between both groups (Mann-Whitney; P> 0.05). However, when compared to the control, only QTH significantly reduced the cell metabolism (Mann-Whitney; P< 0.05). It was concluded that the irradiance of 0.5 mm-thick human dentin discs with a QTH in comparison to a LED curing unit promoted a higher temperature rise, which propagates through the dentin negatively affecting the metabolism of the underlying cultured pulp cells. (Am J Dent 2009;22:151-156).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The temperature of different refrigerant sprays (Endo-Ice, Endo-Frost, Coolermatic and Sprayon Contact and Tuner Cleaner) used as pulpal tests were evaluated in vitro. A thermocouple placed inside the pulp chamber of a maxillary central incisor was used to register the temperature changes when the refrigerant sprays were applied with a cotton swab, for 10 s. Results indicate that Endo-Ice and Endo-Frost presented the lowest temperatures among the refrigerant sprays tested. Temperatures measured inside the pulp chamber, however, were statistically similar in all groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In vitro studies have provided conflicting evidence of temperature changes in the tooth pulp chamber after low-level laser irradiation of the tooth surface. The present study was an in vitro evaluation of temperature increases in the human tooth pulp chamber after diode laser irradiation (GaAlAs, lambda = 808 nm) using different power densities. Twelve human teeth (three incisors, three canines, three premolars and three molars) were sectioned in the cervical third of the root and enlarged for the introduction of a thermocouple into the pulp chamber. The teeth were irradiated with 417 mW, 207 mW and 78 mW power outputs for 30 s on the vestibular surface approximately 2 mm from the cervical line of the crown. The highest average increase in temperature (5.6A degrees C) was observed in incisors irradiated with 417 mW. None of the teeth (incisors, canines, premolars or molars) irradiated with 207 mW showed temperature increases higher than 5.5A degrees C that could potentially be harmful to pulp tissue. Teeth irradiated with 78 mW showed lower temperature increases. The study showed that diode laser irradiation with a wavelength of 808 nm at 417 mW power output increased the pulp chamber temperature of certain groups of teeth, especially incisors and premolars, to critical threshold values for the dental pulp (5.5A degrees C). Thus, this study serves as a warning to clinicians that ""more"" is not necessarily ""better"".

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Free-living bacteria must respond to a wide range of temperature changes, and have developed specific mechanisms to survive in extreme environments. In this work we describe a remarkable resistance of mesophilic bacterium Caulobacter crescentus to several cycles of freezing at -80 degrees C, which was able to grow at low temperatures. Exponentially growing cells and late stationary-phase cells presented higher freezing resistance at both -20 and -80 degrees C than early stationary-phase cells. Cryotolerance was observed when log-phase cultures grown at 30 degrees C were preincubated at 5, 15 or 20 degrees C before freezing at -20 degrees C. A transposon library was screened to identify mutants sensitive to freezing at -80 degrees C and three strains presenting < 10% survival were isolated. Identification of genes disrupted in each mutant showed that they encoded an AddA family DNA helicase, a DEAD/DEAH box RNA helicase and a putative RND (resistance, nodulation, cell division) efflux system component. These strains showed longer generation times than wild-type cells when growing at 15 degrees C, with the RNA helicase mutant presenting a severe growth defect. These analyses suggest that the singular intrinsic resistance to freezing of C. crescentus is in fact a consequence of several independent traits, especially the maintenance of a proper degree of supercoiling of nucleic acids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed at evaluating the thermographic changes associated with localized exercise in young and elderly subjects. An exercise protocol using 1 kg load was applied during 3 min to the knee flexors of 14 elderly (67 +/- 5 years) and 15 young (23 +/- 2 years) healthy subjects. The posterior thigh`s skin temperature of the exercised limb and contralateral limb were measured by infrared thermography on pre-exercise, immediately post-exercise, and during the 10-min period post-exercise. Difference (p < 0.01) between elderly and young subjects was observed on pre-exercise temperature. Although differences were not observed between pre-exercise and immediately post-exercise temperature in the exercised limb, thermographic profile displayed heat concentration in exercised areas for both groups. Temperature reduction was only observed for the young group on the 10-min post-exercise (p < 0.05) in the exercised limb (30.7 +/- 1.7 to 30.3 +/- 1.5 degrees C). In contrast, there was a temperature reduction post-exercise (p < 0.01) in the contralateral limb for both groups. These results present new evidences that elderly and young subjects display similar capacity of heat production; however, the elderly subjects presented a lower resting temperature and slower heat dissipation. This work contributes to improve the understanding about temperature changes in elderly subjects and may present implications to the sports and rehabilitation programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biological rhythms are regulated by homeostatic mechanisms that assure that physiological clocks function reliably independent of temperature changes in the environment. Temperature compensation, the independence of the oscillatory period on temperature, is known to play a central role in many biological rhythms, but it is rather rare in chemical oscillators. We study the influence of temperature on the oscillatory dynamics during the catalytic oxidation of formic acid on a polycrystalline platinum electrode. The experiments are performed at five temperatures from 5 to 25 degrees C, and the oscillations are studied under galvanostatic control. Under oscillatory conditions, only non-Arrhenius behavior is observed. Overcompensation with temperature coefficient (q(10), defined as the ratio between the rate constants at temperature T + 10 degrees C and at T) < I is found in most cases, except that temperature compensation with q(10) approximate to I predominates at high applied currents. The behavior of the period and the amplitude result from a complex interplay between temperature and applied current or, equivalently, the distance from thermodynamic equilibrium. High, positive apparent activation energies were obtained under voltammetric, nonoscillatory conditions, which implies that the non-Arrhenius behavior observed under oscillatory conditions results from the interplay among reaction steps rather than, from a weak temperature dependence of the individual steps.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Compliant mechanisms can achieve a specified motion as a mechanism without relying on the use of joints and pins. They have broad application in precision mechanical devices and Micro-Electro Mechanical Systems (MEMS) but may lose accuracy and produce undesirable displacements when subjected to temperature changes. These undesirable effects can be reduced by using sensors in combination with control techniques and/or by applying special design techniques to reduce such undesirable effects at the design stage, a process generally termed ""design for precision"". This paper describes a design for precision method based on a topology optimization method (TOM) for compliant mechanisms that includes thermal compensation features. The optimization problem emphasizes actuator accuracy and it is formulated to yield optimal compliant mechanism configurations that maximize the desired output displacement when a force is applied, while minimizing undesirable thermal effects. To demonstrate the effectiveness of the method, two-dimensional compliant mechanisms are designed considering thermal compensation, and their performance is compared with compliant mechanisms designs that do not consider thermal compensation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The topographical features of intraradicular dentine pretreated with sodium hypochlorite (NaOCl) or ethylenediamine tetraacetic acid (EDTA) followed by diode laser irradiation have not yet been determined. Purpose: To evaluate the alterations of dentine irradiated with 980-nm diode laser at different parameters after the surface treatment with NaOCl and EDTA. Study design: Roots of 60 canines were biomechanically prepared and irrigated with NaOCl or EDTA. Groups were divided according to the laser parameters: 1.5 W/CW; 1.5 W/100 Hz; 3.0 W/CW; 3.0 W/100 Hz and no irradiation (control). The roots were splited longitudinally and analyzed by scanning electron microscopy (SEM) in a quali-quatitative way. The scores were submitted to two-way Kruskal-Wallis and Dunn`s tests. Results: The statistical analysis demonstrated that the specimens treated only with NaOCl or EDTA (control groups) were statistically different (P < 0.05) from the laser-irradiated specimens, regardless of the parameter setting. The specimens treated with NaOCl showed a laser-modified surface with smear layer, fissures, and no visible tubules. Those treated with EDTA and irradiated by laser presented absence of smear layer, tubules partially exposed and melting areas. Conclusions: The tested parameters of 980-nm diode laser promoted similar alterations on dentine morphology, dependent to the type of surface pretreatment. Microsc. Res. Tech. 72:22-27, 2009. (C) 2008 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60A degrees C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to evaluate the effect of environmental temperature on ruminal fermentation and on mineral levels of growing ruminants, it was used 12 male calves (initial average weight 82.9 ± 7.7 kg, 100 days of age), were employed in a randomized block design (by weight) experiment, with repeated weight measurement and two environmental temperatures: thermoneutral (24ºC) and heat-stressed (33ºC), during 38 days. The animals exposed to 33ºC presented lower dry matter ingestion, lower T3 (triiodothyronine) serum level, higher ammoniacal nitrogen (NH3-N) level in the rumen liquid, and higher rectal and body temperatures during all the experimental period when compared to the animals kept in thermoneutral environment (24ºC). The animals kept under heat stress environment (33ºC) presented higher calcium serum level, which was the highest on 31st day and the lowest on the 38th day of the experiment; phosphorus level was the lowest during all the experimental period; sodium level was lower on the 17th, 31st and 38th experimental days. Potassium and zinc levels were lower after 24 days; copper level was lower until the 24th day; magnesium level was higher until the 17th day, if compared to the ones from the animals kept in thermoneutral environment (24ºC). The heat-stressed animals presented higher levels of ammoniacal nitrogen in the ruminal liquid and a decrease in the phosphorus, sodium, potassium and zinc serum levels. These results show the necessity of changes on feed management to ruminants in temperatures over the thermal comfort limits so that performance loss is decreased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Storage at low temperature is the most frequently used method to extend the shelf life of banana fruit, and is fundamental for extended storage and transport over long distances. However, storage and transport conditions must be carefully controlled because of the high susceptibility of many commercial cultivars to chilling injury. The physiological behavior of bananas at low temperatures has been studied to identify possible mechanisms of resistance to chilling injury. The aim of this work was to evaluate differences in the starch-to-sucrose metabolism of a less tolerant and susceptible (Musa acuminata, AAA cv. Nanicao) and a more tolerant (M. acuminata x Musa balbusiana, AAB, cv. Prata) banana cultivar to chilling injury. Fruits of these cultivars were stored in chambers at 13 degrees C for 15 d, at which point they were transferred to 19 degrees C, where they were left until complete ripening. The low temperature induced significant changes in the metabolism of starch and sucrose in comparison to fruit ripened only at 19 degrees C. The sucrose accumulation was slightly higher in cv. Prata, and different patterns of starch degradation, sucrose synthesis, activity and protein levels of the alpha-and beta-amylases, starch phosphorylase, sucrose synthase and sucrose phosphate synthase were detected between the cultivars. Our results suggest that starch-to-sucrose metabolism is likely part of the mechanism for cold acclimation in banana fruit, and the cultivar-dependent differences contribute to their ability to tolerate cold temperatures. (C) 2011 Elsevier B.V. All rights reserved.