5 resultados para Température de surface du sol
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.
Resumo:
By heating powders of the aluminum monohydroxide fibrillar pseudoboehmite from 200 degrees C to 1400 degrees C several high surface area aluminas are prepared and characterized by X-ray diffraction and electron optical methods. Aqueous sols with pseudoboehmite fibrils of different lengths were dried by two methods: at room temperature and spray-dried. The following aluminas were obtained after treatment of the powders at increasing temperatures and having a range of specific surface areas: gamma-Al(2)O(3) (470 degrees C - 770 degrees C; 179 m(2)/g 497 m(2)/g); delta-Al(2)O(3) (770 degrees C - 930 degrees C; 156 m(2)/g - 230 m(2)/g); theta-Al(2)O(3) (930 degrees C - 1050 degrees C; 11 m(2)/g - 200 m(2)/g); alpha-Al(2)O(3) (1050 degrees C - 1400 degrees C; 2 m(2)/g - 17 m(2)/g). Spray-dried powders, fired at the same temperature than the ground powders, showed higher specific surface areas. The higher surface area alumina have values of the same order of magnitude of the commercial ""ad-cat"" aluminas.
Resumo:
Four aluminas were used as Supports for impregnation with a zirconium oxide with the aim to achieve a coating, without phase separation, between Support and modifier. The Supports were impregnated with different concentrations Of zirconium aqueous resin, obtained through the polymeric precursor method. After impregnation the samples were calcined and then characterized by XRD, which led to identification of crystalline zirconia in different concentrations from each support used. Using a simple geometric model the maximum amount Of Surface modifier Oxide required for the complete coating of a support with a layer of unit cells was estimated. According to this estimate, only the support should be identified below the limit proposed and crystalline zirconium oxide Should be identified above this limit when a complete coating is reached. The results obtained From XRD agree with the estimated values and to confirm the coating, the samples were also characterized by EDS/STEM, HRTEM, XPS, and XAS. The results showed that the zirconium oxide oil the Surface of alumina Support reached the coating in the limit of 15 Zr nm(-2), without the formation of the ZrO(2) phase. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Rhodamine 6G (RH6G) laser dye-doped AlPO(4) xerogel and glass were prepared via a simple sol-gel route by one-step process and two-step process, respectively. The aggregating behavior of dyes in xerogel and glass was studied by excitation and emission spectra. The results indicated the dye aggregates become significantly weak in AlPO(4) glass than in xerogel, which might be attributed to the enhanced interactions between dye and AlPO(4) network as well as the nano-scale separation of dye by the mesoporous structure of AlPO(4) glass. The (27)Al MAS NMR of AlPO(4) glass confirms the interaction of RH6G with AlPO(4) glass network. Incorporation of RH6G into AlPO(4) glass converts Al(4) to Al(6) units, resulting in the increase of Al(6) concentration with the doped RH6G concentration. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Titanium dioxide with and without the addition of neodymium ions was prepared using sol-gel and precipitation methods. The resulting catalysts were characterized by thermal analysis, X-ray diffraction and BET specific surface area. Neodymium addition exerted a remarkable influence on the phase transition temperature and the surface properties of the TiO(2) matrix. TiO(2) samples synthesized by precipitation exhibit an exothermic event related from the amorphous to anatase phase transition at 510 degrees C, whereas in Nd-doped TiO(2) this transition occurred at 527 degrees C. A similar effect was observed in samples obtained using sol-gel method. The photocatalytic reactivity of the catalysts was evaluated by photodegradation of Remazol Black B (RB) under ultraviolet irradiation. Nd-doped TiO(2) showed enhanced photodegradation ability compared to undoped TiO(2) samples, independent of the method of synthesis. In samples obtained by sol-gel, RB decoloration was enhanced by 16% for TiO(2) doped with 0.5% neodymium ions. (C) 2010 Elsevier B.V. All rights reserved.