2 resultados para Telomeres
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In Drosophila, telomere retrotransposons counterbalance the loss of telomeric DNA. The exceptional mechanism of telomere recovery characterized in Drosophila has not been found in lower dipterans (Nematocera). However, a retroelement resembling a telomere transposon and termed ""RaTART"" has been described in the nematoceran Rhynchosciara americana. In this work, DNA and protein sequence analyses, DNA cloning, and chromosomal localization of probes obtained either by PCR or by screening a genomic library were carried out in order to examine additional features of this retroelement. The analyses performed raise the possibility that RaTART represents a genomic clone composed of distinct repetitive elements, one of which is likely to be responsible for its apparent enrichment at chromosome ends. RaTART sequence in addition allowed to assess a novel subtelomeric region of R. americana chromosomes that was analyzed in this work after subcloning a DNA fragment from a phage insert. It contains a complex repeat that is located in the vicinity of simple and complex tandem repeats characterized previously. Quantification data suggest that the copy number of the repeat is significantly lower than that observed for the ribosomal DNA in the salivary gland of R. americana. A short insertion of the RaTART was identified in the cloned segment, which hybridized preferentially to subtelomeres. Like RaTART, it displays truncated sequences related to distinct retrotransposons, one of which has a conceptual translation product with significant identity with an endonuclease from a lepidopteran retrotransposon. The composite structure of this DNA stretch probably reflects mobile element activity in the subtelomeric region analyzed in this work.
Resumo:
Non-LTR retrotransposons, also known as long interspersed nuclear elements (LINEs), are transposable elements that encode a reverse transcriptase and insert into genomic locations via RNA intermediates. The sequence analysis of a cDNA library constructed from mRNA of the salivary glands of R. americana showed the presence of putative class I elements. The cDNA clone with homology to a reverse transcriptase was the starting point for the present study. Genomic phage was isolated and sequenced and the molecular structure of the element was characterized as being a non-LTR retrotransposable element. Southern blot analysis indicated that this transposable element is represented by repeat sequences in the genome of R. americana. Chromosome tips were consistently positive when this element was used as probe in in-situ hybridization. Real-time RT-PCR showed that this retrotransposon is transcribed at different periods of larval development. Most interesting, the silencing of this retrotransposon in R. americana by RNA interference resulted in reduced transcript levels and in accelerated larval development.