5 resultados para Technical directions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Technical actions performed by two groups of judokas who won medals at World Championships and Olympic Games during the period 1995-2001 were analyzed. In the Super Elite group (n = 17) were the best athletes in each weight category. The Elite group (n = 16) were medal winners who were not champions and did not win more than three medals. Super Elite judokas used a greater number of throwing techniques which resulted in scores, even when expressed relative to the total number of matches performed, and these techniques were applied in more directions than those of Elite judokas. Further, the number of different throwing techniques and the variability of directions in which techniques were applied were significantly correlated with number of wins and the number of points and ippon scored. Thus, a greater number of throwing techniques and use of directions for attack seem to be important in increasing unpredictability during judo matches.
Resumo:
Although the biodimensional anatomical expander-implant system (BEIS) is a reliable technique, little information has been available regarding outcome following nipple-areola sparing mastectomy (NSM). To perform the resection of glandular tissue, while improving the surgical access and maintaining the nipple-areola vascularization we have developed a new approach for NSM based on the double concentric periareolar incision (DCPI). The purpose of this study is to analyze the feasibility, surgical planning and its outcome following NSM. 18 patients underwent NSM reconstructions. Mean time of follow-up was 29 months. The technique was indicated in patients with small/moderate volume breasts. Flap complications were evaluated and information on aesthetic results and patient satisfaction were collected. 83.3% had tumors measuring 2 cm or less (T1) and 72.1% were stage 0 and 1. All patients presented peripherally tumors located (at least 5 cm from the nipple). Skin complications occurred in 11.1%. One patient (5.5%) presented small skin necrosis and a wound dehiscence was observed in one patient (5.5%). The aesthetic result was good/very good in 94.4 percent and the majority of patients were very satisfied/satisfied. No local recurrences were observed. All complications except one were treated by a conservative approach. DCPI-BEIS is a simple and reliable technique for NSM reconstruction. The success depends on patient selection, coordinated planning with the oncologic surgeon and careful intra-operative and post-operative management. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a ""Ribbon"" of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within similar to 40 pc. Using interstellar polarization observations toward similar to 30 nearby stars within similar to 90 degrees of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of lambda, beta similar to 263 degrees, 37 degrees (or galactic coordinates of l, b similar to 38 degrees, 23 degrees), with uncertainties of +/- 35 degrees based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 degrees from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E(th) = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E(th) are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above E(th)/Z (for illustrative values of Z = 6, 13, 26). If the anisotropies above E(th) are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.