2 resultados para THERMAL-RESISTANCE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We report the design and operation of a device for ac magnetic susceptibility measurements that can operate down to 1 mK. The device, a modification of the standard mutual inductance bridge, is designed with detailed consideration of the thermalization and optimization of each element. First, in order to reduce local heating, the primary coil is made with superconducting wire. Second, a low-temperature transformer which is thermally anchored to the mixing chamber of a dilution refrigerator, is used to match the output of the secondary coil to a high-sensitivity bridge detector. The careful thermal anchoring of the secondary coil and the matching transformer is required to reduce the overall noise temperature and maximize sensitivity. The sample is immersed in liquid (3)He to minimize the Kapitza thermal resistance. The magnetic susceptibility of several magnetic compounds, such as the well-known spin gap compound NiCl(2)-4SC(NH(2))(2) and other powdered samples, have been successfully measured to temperatures well below 10 mK.
Resumo:
The objective of this work was to study the color, opacity, crystallinity, and the thermal and mechanical properties of films based on blends of gelatin and five different types of PVA [poly(vinyl alcohol)], with and without a plasticizer. The effect of the degree of hydrolysis of the PVA and the glycerol concentration on these properties was studied using colorimetry, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile mechanical tests. All films were essentially colorless (Delta E* < 5) and with low opacity ( Y <= 2.1). The DSC results were typical of partially crystalline materials, showing some phase separation characterized by a glass transition (T(g) = 40-55 degrees C), related to the amorphous part of the material, followed by two endothermic peaks related to the melting (T(m) = 100-160 and 170-210 degrees C) of the crystallites. The XRD results confirmed the crystallinity of the films. The film produced with PVA Celvol((R)) 418 (DH = 91.8%) showed the highest tensile resistance (tensile strength = 38 MPa), for films without plasticizer. However, with glycerol, the above-mentioned PVA and the PVA Celvol((R)) 504 produced the least resistant films of all the PVA types. But, although the mechanical properties of the blended films depended on the type of PVA used, there was no direct relationship between these properties and the degree of hydrolysis of the PVA. The properties studied were more closely dependent on the glycerol concentration. Finally, the mechanical resistance of the films presented a linear relationship with the glass transition temperature of the films. (c) 2007 Elsevier Ltd. All rights reserved.