4 resultados para TELECOMMUNICATIONS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2006 the Route load balancing algorithm was proposed and compared to other techniques aiming at optimizing the process allocation in grid environments. This algorithm schedules tasks of parallel applications considering computer neighborhoods (where the distance is defined by the network latency). Route presents good results for large environments, although there are cases where neighbors do not have an enough computational capacity nor communication system capable of serving the application. In those situations the Route migrates tasks until they stabilize in a grid area with enough resources. This migration may take long time what reduces the overall performance. In order to improve such stabilization time, this paper proposes RouteGA (Route with Genetic Algorithm support) which considers historical information on parallel application behavior and also the computer capacities and load to optimize the scheduling. This information is extracted by using monitors and summarized in a knowledge base used to quantify the occupation of tasks. Afterwards, such information is used to parameterize a genetic algorithm responsible for optimizing the task allocation. Results confirm that RouteGA outperforms the load balancing carried out by the original Route, which had previously outperformed others scheduling algorithms from literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the useful life of a LAN, network downtimes will have a negative impact on organizational productivity not included in current Network Topological Design (NTD) problems. We propose a new approach to LAN topological design that includes the impact of these productivity losses into the network design, minimizing not only the CAPEX but also the expected cost of unproductiveness attributable to network downtimes over a certain period of network operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need of efficient (fast and low consumption) optoelectronic devices has always been the driving force behind the investigation of materials with new or improved properties. To be commercially attractive, however, these materials should be compatible with our current micro-electronics industry and/or telecommunications system. Silicon-based compounds, with their matured processing technology and natural abundance, partially comply with such requirements-as long as they emit light. Motivated by these issues, this work reports on the optical properties of amorphous Si films doped with Fe. The films were prepared by sputtering a Si+Fe target and were investigated by different spectroscopic techniques. According to the experimental results, both the Fe concentration and the thermal annealing of the samples induce changes in their atomic structure and optical-electronic properties. In fact, after thermal annealing at similar to 750 degrees C, the samples partially crystallize with the development of Si and/or beta-FeSi(2) crystallites. In such a case, certain samples present light emission at similar to 1500 nm that depends on the presence of beta-FeSi(2) crystallites and is very sensitive to the annealing conditions. The most likely reasons for the light emission (or absence of it) in the considered Fe-doped Si samples are presented and discussed in view of their main structural-electronic characteristics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assessment of routing protocols for mobile wireless networks is a difficult task, because of the networks` dynamic behavior and the absence of benchmarks. However, some of these networks, such as intermittent wireless sensors networks, periodic or cyclic networks, and some delay tolerant networks (DTNs), have more predictable dynamics, as the temporal variations in the network topology can be considered as deterministic, which may make them easier to study. Recently, a graph theoretic model-the evolving graphs-was proposed to help capture the dynamic behavior of such networks, in view of the construction of least cost routing and other algorithms. The algorithms and insights obtained through this model are theoretically very efficient and intriguing. However, there is no study about the use of such theoretical results into practical situations. Therefore, the objective of our work is to analyze the applicability of the evolving graph theory in the construction of efficient routing protocols in realistic scenarios. In this paper, we use the NS2 network simulator to first implement an evolving graph based routing protocol, and then to use it as a benchmark when comparing the four major ad hoc routing protocols (AODV, DSR, OLSR and DSDV). Interestingly, our experiments show that evolving graphs have the potential to be an effective and powerful tool in the development and analysis of algorithms for dynamic networks, with predictable dynamics at least. In order to make this model widely applicable, however, some practical issues still have to be addressed and incorporated into the model, like adaptive algorithms. We also discuss such issues in this paper, as a result of our experience.