6 resultados para TA R07 WELS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
By using the time-differential perturbed angular correlation technique, the electric field gradients (EFG) at (181)Hf/(181)Ta and (111)In/(111)Cd probe sites in the MoSi(2)-type compound Ti(2)Ag have been measured as a function of temperature in the range from 24 to 1073 K. Ab initio EFG calculations have been performed within the framework of density functional theory using the full-potential augmented plane wave + local orbitals method as implemented in the WIEN2k package. These calculations allowed assignments of the probe lattice sites. For Ta, a single well-defined EFG with very weak temperature dependence was established and attributed to the [4(e)4mm] Ti site. For (111)Cd probes, two of the three measured EFGs are well defined and correlated with substitutional lattice sites, i.e. both the [4(e)4mm] Ti site and the [2(a)4/mmm] Ag site.
Resumo:
Structural, spectroscopic and dielectric properties of thulium-doped laser-heated pedestal Ta(2)O(5) as-grown fibres were studied. Undoped samples grow preferentially with a single crystalline monoclinic structure. The fibre with the lowest thulium content (0.1 at%) also shows predominantly a monoclinic phase and no intra-4f(12) Tm(3+) recombination was observed. For sample with the highest thulium amount (1.0 at%), the appearance of a dominant triclinic phase as well as intraionic optical activation was observed. The dependence of photoluminescence on excitation energy allows identification of different site locations of Tm(3+) ions in the lattice. The absence of recombination between the first and the ground-state multiplets as well as the temperature dependence of the observed transitions was justified by an efficient energy transfer between the Tm(3+) ions. Microwave dielectric properties were investigated using the small perturbation theory. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for thulium-doped Ta(2)O(5) samples it decreases to 18 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Erbium-doped single crystal fibers, with low phonon energy and fairly high absorption and emission cross sections are interesting laser active media, for compact, near-infrared and/or upconversion lasers. In this work, high optical quality Er3+-doped CaNb2O6 and CaTa2O6 single crystal fibers were successfully grown by the versatile laser-heated pedestal growth technique, and characterized from the structural and spectroscopic points of view. The results indicate that these crystal fiber compositions, which had not been explored so far, offer potential applications, not only as laser active media, but also in other optical devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
The electronic structure and chemical bonding of the ground and low-lying Lambda - S and Omega states of Ta(2) were investigated at the multiconfiguration second-order perturbation theory (CASSCF//CASPT2) level. The ground state of Ta(2) is computed to be a X(3)Sigma(-)(g) state (R(e) = 2.120 angstrom, omega(e) = 323 cm(-1), and D(e) = 4.65 eV), with two low-lying singlet states close to it (a(1) Sigma(+)(g) : T(e) = 409 cm(-1), R(e) = 2.131 angstrom, and omega(e) = 313 cm(-1); b(1) Gamma(g): T(e) = 1, 038 cm(-1), R(e) = 2.127 angstrom, and omega(e) = 316 cm(-1)). These electronic states are derived from the same electronic configuration: vertical bar 13 sigma(2)(g)14 sigma(2)(g)7 delta(2)(g)13 pi(4)(u)>. The effective bond order of the X(3) Sigma(-)(g) state is 4.52, which indicates that the Ta atoms are bound by a quintuple chemical bond. The a(1) Sigma(+)(g) state interacts strongly with the X(3)Sigma(-)(g) g ground state by a second-order spin-orbit interaction, giving rise to the (1)0(g)(+) (ground state) (dominated by the X(3)Sigma(-)(g) Lambda - S ground state) and (9)0(g)(+) (dominated by the a(1) Sigma(+)(g) Lambda - S state) Omega states. These results are in line with those reported for the group 5B homonuclear transition metal diatomics. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1306-1315, 2011
Resumo:
The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.