2 resultados para Sylvius
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Gymnotus cf. carapo and Gynznotus sylvius are two fish species inhabiting the Upper Parana River Basin, presenting respectively 2n =54 and 2n = 40 chromosomes. In the present cytogenetic analysis, R-banding and telomere-sequence hybridization were carried out in order to determine the possible relationship between the karyotipes of these two species. Incorporation bands (R-bands) obtained for the two species allowed the identification of chromosome similarities, showing to be an usefull alternative to the G-banding methods, which fail in producing satisfying results in most of analyzed fish species. This approach, associated with the hybridization of telomeric sequences, permited to identify chromosomal rearrangements that could be used as indicators of karyotypic evolution within the group. In the present case, telomeric sequences were detected in the centromeric region of two metacentric chromosome pairs of Gymnotus sylvius. The results obtained after hybridization with the telomere sequences, coupled with the chromosome homeologies detected by R-banding, showed that G. cf carapo and G. sylvius should present a common ancestor, and this may also be corroborated by the similarities found in three chromosome pairs, that seem to have been conserved during the evolution of the two species. Based on the data here presented we propose that G. sylvius may have undergone a recent process of chromosome fusion that resulted in the diminution of its chromosome number.
Resumo:
Introduction: Current advances in frame modeling and computer software allow stereotactic procedures to be performed with great accuracy and minimal risk of neural tissue or vascular injury. Case Report: In this report we associate a previously described minimally invasive stereotactic technique with state-of-the-art 3D computer guidance technology to successfully treat a 55-year-old patient with an arachnoidal cyst obstructing the aqueduct of Sylvius. We provide 1 detailed technical information and discuss how this technique deals with previous limitations for stereotactic manipulation of the aqueductal region. We further discuss current advances in neuroendoscopy for treating obstructive hydrocephalus and make comparisons with our proposed technique. Conclusion: We advocate that this technique is not only capable of treating this pathology but it also has the advantages to enable reestablishment of physiological CSF flow thus preventing future brainstem compression by cyst enlargement.