6 resultados para Sweating
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The objective of this study was to test a device developed to improve the functionality, accuracy and precision of the original technique for sweating rate measurements proposed by Schleger and Turner [Schleger AV, Turner HG (1965) Aust J Agric Res 16:92-106]. A device was built for this purpose and tested against the original Schleger and Turner technique. Testing was performed by measuring sweating rates in an experiment involving six Mertolenga heifers subjected to four different thermal levels in a climatic chamber. The device exhibited no functional problems and the results obtained with its use were more consistent than with the Schleger and Turner technique. There was no difference in the reproducibility of the two techniques (same accuracy), but measurements performed with the new device had lower repeatability, corresponding to lower variability and, consequently, to higher precision. When utilizing this device, there is no need for physical contact between the operator and the animal to maintain the filter paper discs in position. This has important advantages: the animals stay quieter, and several animals can be evaluated simultaneously. This is a major advantage because it allows more measurements to be taken in a given period of time, increasing the precision of the observations and diminishing the error associated with temporal hiatus (e.g., the solar angle during field studies). The new device has higher functional versatility when taking measurements in large-scale studies (many animals) under field conditions. The results obtained in this study suggest that the technique using the device presented here could represent an advantageous alternative to the original technique described by Schleger and Turner.
Resumo:
OBJETIVO: A prática de exercícios físicos, devido à produção inerente de calor, pode conduzir à desidratação. A maioria dos estudos que abordam os riscos da desidratação e fornecem recomendações de reposição hídrica é direcionada a indivíduos adultos residentes em regiões de clima temperado, porém, em regiões tropicais, pouco é conhecido sobre as necessidades de reposição hídrica em crianças fisicamente ativas. Esta revisão discute as recomendações para esta população e estabelece os riscos da prática esportiva em ambiente de clima tropical. FONTES DE DADOS: Análise sistemática com levantamento da literatura nacional (SciELO) e internacional (Medline) de artigos publicados entre 1972 e 2009, com os seguintes descritores isolados ou em combinação: hidratação, crianças, desidratação e reposição hídrica. Foram selecionados artigos publicados nas línguas portuguesa e inglesa. SÍNTESES DE DADOS: Observou-se que há riscos de desidratação e possível desenvolvimento de um quadro de hipertermia principalmente se as crianças são submetidas a condições climáticas desfavoráveis sem reposição hídrica adequada. O principal fator desencadeante da hipertermia é a menor adaptação das crianças aos extremos de temperatura, em comparação aos adultos, por possuírem área maior de superfície corporal e capacidade menor de termorregulação por evaporação. CONCLUSÕES: Conhecidos os fatores intervenientes da desidratação, a melhor recomendação, perante uma condição climática sabidamente desfavorável, é estabelecer um plano impositivo de hidratação com bebida com sabor e acréscimo de carboidratos e sódio, evitando-se uma perda hídrica significativa, diminuição da performance e, principalmente, com o objetivo de reduzir os riscos à saúde impostos pela hipertermia e desidratação a crianças fisicamente ativas.
Resumo:
Purpose: We compared the results from a video-assisted thoracoscopic sympathectomy (VTS) at the T4 denervation level with those from a VTS at the T3 level for the treatment of palmar hyperhydrosis (PH). Methods: Seventy patients with PH were prospectively followed for VTS at the T3 or T4 denervation levels for 6 months. The end points of this study were: absence of PH, compensatory hyperhydrosis (CH), and quality-of-life assessment. Results: Sixty-seven patients reported a complete resolution of PH after surgery. One failure occurred in the T3 group and 2 in the T4 group. When anhydrosis was obtained, we noticed totally dry hands in 26 patients in the T3 group and 6 patients in the T4 group. The other 27 patients in the T4 group and 8 in the T3 group maintained a small level of sweating and were also considered to be therapeutic successes. At 6 months, 25 patients in the T4 group had some degree of CH (71.42%) and all patients in the T3 group (100%), though the T4 group had a lower degree of severity of CH at the 6-month follow-up (P < 0.05). After the operation, quality of life was improved similarly in both groups. Conclusions: VTS at either the T3 or T4 level provides an effective treatment for PH. VTS at the T4 level is associated with a less severe form of CH. Despite the occurrence of CH, patients' quality of life is significantly improved following VTS at the T3 or T4 levels. For this reason, the T4 resection can now be used as a treatment for PH.
Resumo:
Significant controversies surround the optimal treatment of primary hyperhidrosis of the hands, axillae, feet, and face. The world`s literature on hyperhidrosis from 1991 to 2009 was obtained through PubMed. There were 1,097 published articles, of which 102 were clinical trials. Twelve were randomized clinical trials and 90 were nonrandomized comparative studies. After review and discussion by task force members of The Society of Thoracic Surgeons` General Thoracic Workforce, expert consensus was reached from which specific treatment strategies are suggested. These studies suggest that primary hyperhidrosis of the extremities, axillae or face is best treated by endoscopic thoracic sympathectomy (ETS). Interruption of the sympathetic chain can be achieved either by electrocautery or clipping. An international nomenclature should be adopted that refers to the rib levels (R) instead of the vertebral level at which the nerve is interrupted, and how the chain is interrupted, along with systematic pre and postoperative assessments of sweating pattern, intensity and quality-of-life. The recent body of literature suggests that the highest success rates occur when interruption is performed at the top of R3 or the top of R4 for palmar-only hyperhidrosis. R4 may offer a lower incidence of compensatory hyperhidrosis but moister hands. For palmar and axillary, palmar, axillary and pedal and for axillary-only hyperhidrosis interruptions at R4 and R5 are recommended. The top of R3 is best for craniofacial hyperhidrosis. (Ann Thorac Surg 2011;91:1642-8) (C) 2011 by The Society of Thoracic Surgeons
Resumo:
To evaluate the effects of heat acclimation on sweat rate redistribution and thermodynamic parameters, 9 tropical native volunteers were submitted to 11 days of exercise-heat exposures (40 +/- 0 degrees C and 45.1 +/- 0.2% relative humidity). Sudomotor function was evaluated by measuring total and local (forehead, chest, arm, forearm, and thigh) sweat rates, local sweat sodium concentration, and mean skin and rectal temperatures. We also calculated heat production (H), heat storage (S), heat exchange by radiation (R) and by convection (C), evaporated sweat (E(sw)), sweating efficiency (eta(sw)), skin wettedness (w(sk)), and the ratio between the heat storage and the sum of heat production and heat gains by radiation and convection (S/(H+R+C)). The heat acclimation increased the whole-body sweat rate and reduced the mean skin temperature. There were changes in the local sweat rate patterns: on the arm, forearm, and thigh it increased significantly from day 1 to day 11 (all p<0.05) and the sweat rates from the forehead and the chest showed a small nonsignificant increase (p=0.34 and 0.17, respectively). The relative increase of local sweat rates on day 11 was not different among the sites; however, when comparing the limbs (arm, forearm, and thigh) with the trunk (forehead and chest), there was a significant higher increase in the limbs (32 +/- 5%) in comparison to the trunk (11 +/- 2%, p=0.001). After the heat acclimation period we observed higher w(sk) and E(sw) and reduced S/(H+R+C), meaning greater thermoregulatory efficiency. The increase in the limb sweat rate, but not the increase in the trunk sweat rate, correlated with the increased w(sk), E(sw), and reduced S/(H+R+C) (p<0.05 to all). Altogether, it can be concluded that heat acclimation increased the limbs` sweat rates in tropical natives and that this increase led to increased loss of heat through evaporation of sweat and this higher sweat evaporation was related to higher thermoregulatory efficiency. J Physiol Anthropol 29(1): 1-12, 2010 http://www.jstage.jst.go.jp/browse/jpa2 [DOI: 10.2114/jpa2.29.1]
Resumo:
Animals inheriting the slick hair gene have a short, sleek, and sometimes glossy coat. The objective of the present study was to determine whether slick-haired Holstein cows regulate body temperature more effectively than wild-type Holstein cows when exposed to an acute increase in heat stress. Lactating slick cows (n = 10) and wild-type cows (n = 10) were placed for 10 h in an indoor environment with a solid roof, fans, and evaporative cooling or in an outdoor environment with shade cloth and no fans or evaporative cooling. Cows were exposed to both environments in a single reversal design. Vaginal temperature, respiration rate, surface temperature, and sweating rate were measured at 1200, 1500, 1800, and 2100 h (replicate 1) or 1200 and 1500 h (replicate 2), and blood samples were collected for plasma cortisol concentration. Cows in the outdoor environment had higher vaginal and surface temperatures, respiration rates, and sweating rates than cows in the indoor environment. In both environments, slick-haired cows had lower vaginal temperatures (indoor: 39.0 vs. 39.4 degrees C; outdoor 39.6 vs. 40.2 degrees C; SEM = 0.07) and respiration rate (indoor: 67 vs. 79 breaths/min; outdoor 97 vs. 107 breaths/min; SEM = 5.5) than wild-type cows and greater sweating rates in unclipped areas of skin (indoor: 57 vs. 43 g.h(-1)/m(2); outdoor 82 vs. 61 g.h(-1)/m(2); SEM = 8). Clipping the hair at the site of sweating measurement eliminated the difference between slick-haired and wild-type cows. Results indicate that slick-haired Holstein cows can regulate body temperature more effectively than wild-type cows during heat stress. One reason slick-haired animals are better able to regulate body temperature is increased sweating rate.