40 resultados para Supervisor and operator training
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals
Resumo:
We apply techniques of zeta functions and regularized products theory to study the zeta determinant of a class of abstract operators with compact resolvent, and in particular the relation with other spectral functions.
Resumo:
The purpose of our study was to compare the effects of 8-week progressive strength and power training regimens on strength gains and muscle plasticity [muscle fiber hypertrophy and phenotype shift, mammalian target of rapamycin (mTOR), regulatory-associated protein of mTOR (RAPTOR), rapamycin-insensitive companion of m-TOR (RICTOR), calcineurin and calcipressin gene expression]. Twenty-nine physically active subjects were divided into three groups: strength training (ST), power training (PT) and control (C). Squat 1 RM and muscle biopsies were obtained before and after the training period. Strength increased similarly for both ST and PT groups (P < 0.001). Fiber types I, IIa and IIb presented hypertrophy main time effect (P < 0.05). Only type IIb percentage decreased from pre- to post-test (main time effect, P < 0.05). mTOR and RICTOR mRNA expression increased similarly from pre- to post-test (P < 0.01). RAPTOR increased after training for both groups (P < 0.0001), but to a greater extent in the ST (P < 0.001) than in the PT group. 4EBP-1 decreased after training when the ST and PT groups were pooled (P < 0.05). Calcineurin levels did not change after training, while calcipressin increased similarly from pre- to post-test (P < 0.01). In conclusion, our data indicate that these training regimens produce similar performance improvements; however, there was a trend toward greater hypertrophy-related gene expression and muscle fiber hypertrophy in the ST group.
Resumo:
This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals.
Resumo:
In recent years, beta-blocker therapy has become a primary pharmacologic intervention in patients with heart failure by blocking the sympathetic activity. To compare the exercise training`s sympathetic blockade in healthy subjects (athletes) and the carvedilol`s sympathetic blockade in sedentary heart failure patients by the evaluation of the heart rate dynamic during an exercise test. A total of 26 optimized and 49 nonoptimized heart failure patients in a stable condition (for, at least, 3 months), 15 healthy athletes and 17 sedentary healthy subjects were recruited to perform a cardiopulmonary exercise test. The heart rate dynamic (rest, reserve, peak and the peak heart rate in relation to the maximum predicted for age) was analyzed and compared between the four groups. The heart rate reserve was the same between optimized (48 +/- 15) and nonoptimized (49 +/- 18) heart failure patients (P < 0.0001). The athletes (188 +/- 9) showed a larger heart rate reserve compared to sedentary healthy subjects (92 +/- 10, P < 0.0001). Athletes and healthy sedentary reached the maximum age-predicted heart ratefor their age, but none of the heart failure patients did. The carvedilol`s sympathetic blockade occurred during the rest and during the peak effort in the same proportion, but the exercise training`s sympathetic blockade in healthy subjects occurred mainly in the rest.
Resumo:
Deminice, R, Sicchieri, T, Mialich, MS, Milani, F, Ovidio, PP, and Jordao, AA. Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training. J Strength Cond Res 25(3): 798-804, 2011-We have studied circuit resistance schemes with high loads as a time-effective alternative to hypertrophy-traditional resistance training. However, the oxidative stress biomarker responses to high-load circuit training are unknown. The aim of the present study was to compare oxidative stress biomarker response with an acute session of hypertrophy-resistance circuit training and traditional interval training. A week after the 1 repetition maximum (1RM) test, 11 healthy and well-trained male participants completed hypertrophy-resistance acute sessions of traditional interval training (3 x 10 repetitions at 75% of the 1RM, with 90-second passive rest) and circuit training (3 x 10 repetitions at 75% of the 1RM, in alternating performance of 2 exercises with different muscle groups) in a randomized and cross-over design. Venous blood samples were collected before (pre) and 10 minutes after (post) the resistance training sessions for oxidative stress biomarker assays. As expected, the time used to complete the circuit training (20.2 +/- 1.6) was half of that needed to complete the traditional interval training (40.3 +/- 1.8). Significant increases (p < 0.05) in thiobarbituric acid reactive substances (40%), creatine kinase (CK) (67%), glutathione (14%), and uric acid (25%) were detected posttraditional interval training session in relation to pre. In relation to circuit training, a significant increase in CK (33%) activity postsession in relation to pre was observed. Statistical analysis did not reveal any other change in the oxidative stress biomarker after circuit training. In conclusion, circuit resistance-hypertrophy training scheme proposed in the current study promoted lower oxidative stress biomarkers and antioxidant modulations compared with resistance traditional interval training.
Resumo:
We studied the effects of different protocols of post-disuse rehabilitation on angiogenesis and myosin heavy chain (MHC) content in rat hindlimb muscles after caudal suspension. Thirty female Wistar rats were divided into five groups: (1) Control I, (2) Control II, (3) Suspended, (4) Suspended trained on declined treadmill, and (5) Suspended trained on flat treadmill. Fragments of the soleus and tibialis anterior (TA) muscles were frozen and processed by electrophoresis and immunohistochemistry (CD31 antibody). Hindlimb suspension caused reduction of capillary/fiber (C/F) ratios and contents of MHC type I (MHCI) in the soleus in parallel to increased capillary density. Flat treadmill protocols increased the content of the MHCI isoform. The C/F ratio was increased by concentric training after hypokinesis, but was not modified by eccentric training, which caused a greater reduction of capillary density compared to the other protocols. In the TA muscle, hindlimb suspension caused a non-significant increase in capillary density and C/F ratio with limited changes in MHC. The present data demonstrate that the different training protocols adopted and the functional performance of the muscles analyzed caused specific changes in capillarization and in the content of the various MHC types. (C) 2010 Published by Elsevier GmbH.
Resumo:
We have compared the effects of two types of physical training on the cardiac autonomic control in ovariectomized and sham-operated rats according to different approaches: double autonomic blockade (DAB) with methylatropine and propranolol; baroreflex sensibility (BRS) and spectral analysis of heart rate variability (HRV). Wistar female rats (+/- 250 g) were divided into two groups: sham-operated and ovariectomized. Each group was subdivided into three subgroups: sedentary rats, rats submitted to aerobic trained and rats submitted to resistance training. Ovariectomy did not change arterial pressure, basal heart rate (HR), DAB and BRS responses, but interfered with HRV by reducing the low-frequency oscillations (LF = 0.20-0.75 Hz) in relation to sedentary sham-operated rats. The DAB showed that both types of training promoted an increase in the predominance of vagal tonus in sham-operated rats, but HR variations due to methylatropine were decreased in the resistance trained rats compared to sedentary rats. Evaluation of BRS showed that resistance training for sham-operated and ovariectomized rats reduced the tachycardic responses in relation to aerobic training. Evaluation of HRV in trained rats showed that aerobic training reduced LF oscillations in sham-operated rats, whereas resistance training had a contrary effect. In the ovariectomized rats, aerobic training increased high frequency oscillations (HF = 0.75-2.5 Hz), whereas resistance training produced no effect. In sham-operated rats, both types of training increased the vagal autonomic tonus, but resistance training reduced HF oscillations and BRS as well. In turn, both types of training had similar results in ovariectomized rats, except for HRV, as aerobic training promoted an increase in HF oscillations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Quantity and variety of environmental antigens, age, diet, vaccine protocols, exercising practice and mucosal cytokine microenvironment are factors that influence serum immunoglobulin (Ig) levels. IgA, IgG, IgG(T) and IgM were quantified in 60 horses, which were classified into two groups, `intensive` or `relaxed`, according to sanitary standards of the facilities and physical exercise to which animals were subjected to. The `intensive` group presented lower means for all isotypes, but only IgA presented a significant (P < 0.0064) difference when compared to the `relaxed` group. This suggests that mucosal immunity found in the `intensive` group is lower when compared to the `relaxed` group. Our data suggest that athlete horses may be less poised to mount an effective mucosal immunity response to environmental challenges and should not be considered by the same perspectives as a free-ranging horse.
Resumo:
Oxytocinergic brainstem projections participate in the autonomic control of the circulation. We investigated the effects of hypertension and training on cardiovascular parameters after oxytocin (OT) receptor blockade within the nucleus tractus solitarii (NTS) and NTS OT and OT receptor expression. Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were trained (55% of maximal exercise capacity) or kept sedentary for 3 months and chronically instrumented (NTS and arterial cannulae). Mean arterial blood pressure (MAP) and heart rate (HR) were measured at rest and during an acute bout of exercise after NTS pretreatment with vehicle or OT antagonist (20 pmol of OT antagonist (200 nl of vehicle)-1). Oxytocin and OT receptor were quantified (35S-oligonucleotide probes, in situ hybridization) in other groups of rats. The SHR exhibited high MAP and HR (P < 0.05). Exercise training improved treadmill performance and reduced basal HR (on average -11%) in both groups, but did not change basal MAP. Blockade of NTS OT receptor increased exercise tachycardia only in trained groups, with a larger effect on trained WKY rats (+31 +/- 9 versus +12 +/- 3 beats min-1 in the trained SHR). Hypertension specifically reduced NTS OT receptor mRNA density (-46% versus sedentary WKY rats, P < 0.05); training did not change OT receptor density, but significantly increased OT mRNA expression (+2.5-fold in trained WKY rats and +15% in trained SHR). Concurrent hypertension- and training-induced plastic (peptide/receptor changes) and functional adjustments (HR changes) of oxytocinergic control support both the elevated basal HR in the SHR group and the slowing of the heart rate (rest and exercise) observed in trained WKY rats and SHR.
Resumo:
Intense physical training and dietary energy restriction have been associated with consequences such as nutritional amenorrhea. We investigated the effects of intense physical training, food restriction or the combination of both strategies on estrous cyclicity in female rats, and the relationship between leptin ad these effects. Twenty-seven female Wistar rats were distributed into four groups: SF: sedentary, fed ad libitum; SR: sedentary subjected to 50% food restriction (based on the food intake of their fed counterparts); TF: trained (physical training on a motor treadmill with a gradual increase in speed and time), fed ad libitum; TR; trained with 50% food restriction. We analysed estrous cyclicity, plasma leptin and estradiol as well as chemical composition of the carcass, body weight variation. and weight of ovaries and perirenal adipose tissue. Data demonstrate that physical training alone was not responsible for significant modifications in either carcass chemical composition or reproductive function. Food restriction reduced leptin levels in all animals and interrupted the estrous cyclicity in some animals, but only the combination of food restriction and physical training was capable of interrupting the estrous cyclicity in all animals. Leptin was not directly related to estrous cyclicity. From our findings, it may be concluded that there is an additive or synergistic effect of energy intake restriction and energy expenditure by intense physical training on estrous cyclicity. Leptin appears to be one among others factors related to estrous cycle, but it probably acts indirectly.
Resumo:
The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Delta HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Delta HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Delta HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 +/- 0.2 years; body mass index (BMI) >95(th) percentile) were divided into 2 groups: D (n = 15; BMI = 31 +/- 1 kg/m(2)) and DET (n = 18; 29 +/- 1 kg/m(2)). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Delta HRR1 was defined as the difference between heart rate at peak and at 1-min post-exercise. CANSA was assessed using power spectral analysis of heart rate variability at rest. The sympathovagal balance (low frequency and high frequency ratio, LF/HF) was measured. After interventions, all obese children showed reduced body weight (P < 0.05). The D group did not improve in terms of peak VO(2), Delta HRR1 or LF/HF ratio (P > 0.05). In contrast, the DET group showed increased peak VO(2) (P = 0.01) and improved Delta HRR1 (Delta HRR1 = 37.3 +/- 2.6; P = 0.01) and LF/HF ratio (P = 0.001). The DET group demonstrated significant relationships among Delta HRR1, peak VO(2) and CANSA (P < 0.05). In conclusion, DET, in contrast to D, promoted improved Delta HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
This investigation examined the impact of a 17-d training period (that included basketball-specific training, sprints, intermittent running exercises, and weight training, prior to an international championship competition) on salivary immunoglobulin A (SIgA) levels in 10 subjects (athletes and staff members) from a national basketball team, as a biomarker for mucosal immune defence. Unstimulated saliva samples were collected at rest at the beginning of the preparation for the Pan American Games and 1 d before the first game. The recovery interval from the last bout of exercise was 4 h. The SIgA level was measured using enzyme-linked immunosorbent assay and expressed as absolute concentrations, secretion rate, and SIgA level relative to total protein. The decrease in SIgA levels following training was greater in athletes than in support staff; however, no significant differences between the two groups were detected. A decrease in SIgA level, regardless of the method used to express IgA results, was verified for athletes. Only one episode of upper respiratory tract illness symptoms was reported, and it was not associated with changes in SIgA levels. In summary, a situation of combined stress for an important championship was found to decrease the level of SIgA-mediated immune protection at the mucosal surface in team members, with greater changes observed in the athletes.
Resumo:
SILVA, B. M., F. J. NEVES, M. V. NEGRÃO, C. R. ALVES, R. G. DIAS, G. B. ALVES, A. C. PEREIRA, M. Urbana A. RONDON, J. E. KRIEGER, C. E. NEGRÃO, and A. C. DA NOBREGA. Endothelial Nitric Oxide Synthase Polymorphisms and Adaptation of Parasympathetic Modulation to Exercise Training. Med. Sci. Sports Exerc., Vol. 43, No. 9, pp. 1611-1618, 2011. Purpose: There is a large interindividual variation in the parasympathetic adaptation induced by aerobic exercise training, which may be partially attributed to genetic polymorphisms. Therefore, we investigated the association among three polymorphisms in the endothelial nitric oxide gene (-786T>C, 4b4a, and 894G>T), analyzed individually and as haplotypes, and the parasympathetic adaptation induced by exercise training. Methods: Eighty healthy males, age 20-35 yr, were genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis, and haplotypes were inferred using the software PHASE 2.1. Autonomic modulation (i.e., HR variability and spontaneous baroreflex sensitivity) and peak oxygen consumption ((V) over dotO(2peak)) were measured before and after training (running, moderate to severe intensity, three times per week, 60 min.day(-1), during 18 wk). Results: Training increased (V) over dotO(2peak) (P < 0.05) and decreased mean arterial pressure (P < 0.05) in the whole sample. Subjects with the -786C polymorphic allele had a significant reduction in baroreflex sensitivity after training (change: wild type (-786TT) = 2% +/- 89% vs polymorphic (-786TC/CC) = -28% +/- 60%, median +/- quartile range, P = 0.03), and parasympathetic modulation was marginally reduced in subjects with the 894T polymorphic allele (change: wild type (894GG) = 8% +/- 67% vs polymorphic (894GT/TT) = -18% +/- 59%, median +/- quartile range, P = 0.06). Furthermore, parasympathetic modulation percent change was different between the haplotypes containing wild-type alleles(-786T/4b/894G) and polymorphic alleles at positions -786 and 894 (-786C/4b/894T) (-6% +/- 56% vs -41% +/- 50%, median T quartile range, P = 0.04). Conclusions: The polymorphic allele at position -786 and the haplotype containing polymorphic alleles at positions -786 and 894 in the endothelial nitric oxide gene were associated with decreased parasympathetic modulation after exercise training.