5 resultados para Superior frontal cortex

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-kappa B (nuclear factor kappa B), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/ SAPK (c-Jun N-terminal protein kinase/ stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-kappa B, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/ 2, p38, SAPK/ JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years. studies in behavioral pharmacology have shown the involvement of dopaminergic mechanisms in avoidance behavior as assessed by the two-way active avoidance test (CAR). Changes in dopaminergic transmission also occur in response to particularly threatening challenges. However, studies on the effects of benzodiazepine (BZD) drugs ill this test are still unclear. Given the interplay of dopamine and other neurotransmitters in the neurobiology of anxiety and schizophrenia the aim of this work was to evaluate the effects of systemic administration of midazolam, the dopaminergic agonist apomorphine, and the D(2) receptor antagonist sulpiride using the CAR, a test that shows good sensitivity to typical neuroleptic drugs. Whereas midazolam did not alter the avoidance response. apomorphine increased and sulpiride reduced them in this test. Escape was not affected by any drug treatments. Heightened avoidance was not associated with the increased motor activity caused by apomorphine. In contrast with the benzodiazepine midazolam, activation of post-synaptic D(2) receptors with apomorphine facilitates, whereas the D(2) receptor antagonism with sulpiride inhibited the acquisition of the avoidance behavior. Together, these results bring additional evidence for a role of D(2) mechanisms in the acquisition of the active avoidance. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combining the results of behavioral, neuronal immediate early gene activation, lesion and neuroanatomical experiments, we have presently investigated the role of the superior colliculus (SC) in predatory hunting. First, we have shown that insect hunting is associated with a characteristic large increase in Fos expression in the lateral part of the intermediate gray layer of the SC (Wig). Next, we have shown that animals with bilateral NMDA lesions of the lateral parts of the SC presented a significant delay in starting to chase the prey and longer periods engaged in other activities than predatory hunting. They also showed a clear deficit to orient themselves toward the moving prey and lost the stereotyped sequence of actions seen for capturing, holding and killing the prey. Our Phaseolus vulgaris-leucoagglutinin analysis revealed that the lateral SCig, besides providing the well-documented descending crossed pathway to premotor sites in brainstem and spinal cord, projects to a number of midbrain and diencephalic sites likely to influence key functions in the context of the predatory behavior, such as general levels of arousal, motivational level to hunt or forage, behavioral planning, appropriate selection of the basal ganglia motor plan to hunt, and motor output of the primary motor cortex. In contrast to the lateral SC lesions, medial SC lesions produced a small deficit in predatory hunting, and compared to what we have seen for the lateral SCig, the medial SCig has a very limited set of projections to thalamic sites related to the control of motor planning or motor output, and provides conspicuous inputs to brainstem sites involved in organizing a wide range of anti-predatory defensive responses. Overall, the present results served to clarify how the different functional domains in the SC may mediate the decision to pursue and hunt a prey or escape from a predator. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.