3 resultados para Supercomputer
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We present rigorous upper and lower bounds for the momentum-space ghost propagator G(p) of Yang-Mills theories in terms of the smallest nonzero eigenvalue (and of the corresponding eigenvector) of the Faddeev-Popov matrix. We apply our analysis to data from simulations of SU(2) lattice gauge theory in Landau gauge, using the largest lattice sizes to date. Our results suggest that, in three and in four space-time dimensions, the Landau gauge ghost propagator is not enhanced as compared to its tree-level behavior. This is also seen in plots and fits of the ghost dressing function. In the two-dimensional case, on the other hand, we find that G(p) diverges as p(-2-2 kappa) with kappa approximate to 0.15, in agreement with A. Maas, Phys. Rev. D 75, 116004 (2007). We note that our discussion is general, although we make an application only to pure gauge theory in Landau gauge. Our simulations have been performed on the IBM supercomputer at the University of Sao Paulo.
Resumo:
We present rigorous upper and lower bounds for the zero-momentum gluon propagator D(0) of Yang-Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled extrapolation of lattice data to infinite volume, showing that the infrared limit of the Landau-gauge gluon propagator in SU(2) gauge theory is finite and nonzero in three and in four space-time dimensions. In the two-dimensional case, we find D(0)=0, in agreement with Maas. We suggest an explanation for these results. We note that our discussion is general, although we apply our analysis only to pure gauge theory in the Landau gauge. Simulations have been performed on the IBM supercomputer at the University of Sao Paulo.
Resumo:
We assess the performance of three unconditionally stable finite-difference time-domain (FDTD) methods for the modeling of doubly dispersive metamaterials: 1) locally one-dimensional FDTD; 2) locally one-dimensional FDTD with Strang splitting; and (3) alternating direction implicit FDTD. We use both double-negative media and zero-index media as benchmarks.