55 resultados para Sultotransferase Isoform

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effect of Angiotensin II (Ang II) on the interaction between the Ca(2+)/CaM complex and hNHE1. Considering that calmodulin binds to NHE1 at two sites (A and B), amino acids at both sites were modified and two mutants were constructed: SA(1K3R/4E) and SB(1K3R/4E). Wild type and mutants were transfected into PS120 cells and their activity was examined by H(+) flux (J(H+)). The basal J(H+) of wild type was 4.71 +/- 0.57 (mM/min), and it was similar in both mutants. However, the mutations partially impaired the binding of CaM to hNHE1. Ang II (10(-12) and 10(-9) M) increased the J(H+) in wild type and SB. Ang II (10(-6) M) increased this parameter only in SA. Ang II (10(-9) M) maintained the expression of calmodulin in wild type or mutants, and Ang II (10(-6) M) decreased it in wild type or SA, but not in SB. Dimethyl-Bapta-AM (10(-7) M), a calcium chelator, suppressed the effect of Ang II (10(-9) M) in wild type. With Ang II (10(-6) M), Bapta failed to affect wild type or SA, but it increased the J(H+) in SB. W13 or calmidazolium chloride (10(-5) M), two distinct calmodulin inhibitors, decreased the effect of Ang II (10(-9) M) in wild type or SB. With Ang II (10(-6) M), W13 or calmidazolium chloride decreased the J(H+) in wild type or SA and increased it in SB. Thus, with Ang II (10(-12) and 10(-9) M), site A seems to be responsible for the stimulation of hNHE1 and with Ang II (10(-6) M), site B is important to maintain its basal activity. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of the present study were to identify the cis-elements of the promoter absolutely required for the efficient rat NHE3 gene transcription and to locate positive and negative regulatory elements in the 5’-flanking sequence (5’FS), which might modulate the gene expression in proximal tubules, and to compare this result to those reported for intestinal cell lines. We analyzed the promoter activity of different 5’FS segments of the rat NHE3 gene, in the OKP renal proximal tubule cell line by measuring the activity of the reporter gene luciferase. Because the segment spanning the first 157 bp of 5’FS was the most active it was studied in more detail by sequential deletions, point mutations, and gel shift assays. The essential elements for gene transcription are in the region -85 to -33, where we can identify consensual binding sites for Sp1 and EGR-1, which are relevant to NHE3 gene basal transcription. Although a low level of transcription is still possible when the first 25 bp of the 5’FS are used as promoter, efficient transcription only occurs with 44 bp of 5’FS. There are negative regulatory elements in the segments spanning -1196 to -889 and -467 to -152, and positive enhancers between -889 and -479 bp of 5’FS. Transcription factors in the OKP cell nuclear extract efficiently bound to DNA elements of rat NHE3 promoter as demonstrated by gel shift assays, suggesting a high level of similarity between transcription factors of both species, including Sp1 and EGR-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In children with Duchenne muscular dystrophy, color vision losses have been related to dystrophin deletions downstream of exon 30, which affect a dystrophin isoform, Dp260, present in the retina. To further evaluate visual function in DMD children, we measured spatial, temporal, and chromatic red-green and blue-yellow contrast sensitivity in two groups of DMD children with gene deletion downstream and upstream of exon 30. Psychophysical spatial contrast sensitivity was measured for low, middle, and high spatial frequencies with achromatic gratings and for low and middle frequencies with red-green and blue-yellow chromatic gratings. Temporal contrast sensitivity was also measured with achromatic stimuli. A reduction in sensitivity at all spatial luminance contrasts was found for the DMD patients with deletion downstream of exon 30. Similar results were found for temporal luminance contrast sensitivity. Red-green chromatic contrast sensitivity was reduced in DMD children with deletion downstream of exon 30, whereas blue-yellow chromatic contrast sensitivity showed no significant differences. We conclude that visual function is impaired in DMD children. Furthermore, we report a genotype-phenotype relationship because the visual impairment occurred in children with deletion downstream but not upstream of exon 30, affecting the retinal isoform of dystrophin Dp260.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Thyroid receptors, TRa and TR beta, are involved in important physiological functions such as metabolism, cholesterol level and heart activities. Whereas metabolism increase and cholesterol level lowering could be achieved by TR beta isoform activation, TRa activation affects heart rates. Therefore, beta-selective thyromimetics have been developed as promising drug-candidates for treatment of obesity and elevated cholesterol level. GC-1 [ 3,5-dimethyl-4-(4'-hydroxy- 3'-isopropylbenzyl)-phenoxy acetic acid] has ability to lower LDL cholesterol with 600-to 1400-fold more potency and approximately two-to threefold more efficacy than atorvastatin (Lipitor(C)) in studies in rats, mice and monkeys. Results: To investigate GC-1 specificity, we solved crystal structures and performed molecular dynamics simulations of both isoforms complexed with GC-1. Crystal structures reveal that, in TRa Arg228 is observed in multiple conformations, an effect triggered by the differences in the interactions between GC-1 and Ser277 or the corresponding asparagine (Asn331) of TR beta. The corresponding Arg282 of TR beta is observed in only one single stable conformation, interacting effectively with the ligand. Molecular dynamics support this model: our simulations show that the multiple conformations can be observed for the Arg228 in TR alpha, in which the ligand interacts either strongly with the ligand or with the Ser277 residue. In contrast, a single stable Arg282 conformation is observed for TR beta, in which it strongly interacts with both GC-1 and the Asn331. Conclusion: Our analysis suggests that the key factors for GC-1 selectivity are the presence of an oxyacetic acid ester oxygen and the absence of the amino group relative to T(3). These results shed light into the beta-selectivity of GC-1 and may assist the development of new compounds with potential as drug candidates to the treatment of hypercholesterolemia and obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Endoplasmic reticulum (ER) stress has pathophysiological relevance in vascular diseases and merges with proteasome function. Proteasome inhibition induces cell stress and may have therapeutic implications. However, whether proteasome inhibition potentiates ER stress-induced apoptosis and the possible mechanisms involved in this process are unclear. Methodology/Principal Findings: Here we show that proteasome inhibition with MG132, per se at non-lethal levels, sensitized vascular smooth muscle cells to caspase-3 activation and cell death during ER stress induced by tunicamycin (Tn). This effect was accompanied by suppression of both proadaptive (KDEL chaperones) and proapoptotic (CHOP/GADD153) unfolded protein response markers, although, intriguingly, the splicing of XBP1 was markedly enhanced and sustained. In parallel, proteasome inhibition completely prevented ER stress-induced increase in NADPH oxidase activity, as well as increases in Nox4 isoform and protein disulfide isomerase mRNA expression. Increased Akt phosphorylation due to proteasome inhibition partially offset the proapoptotic effect of Tn or MG132. Although proteasome inhibition enhanced oxidative stress, reactive oxygen species scavenging had no net effect on sensitization to Tn or MG132-induced cell death. Conclusion/Relevance: These data indicate unfolded protein response-independent pathways whereby proteasome inhibition sensitizes vascular smooth muscle to ER stress-mediated cell death. This may be relevant to understand the therapeutic potential of such compounds in vascular disease associated with increased neointimal hyperplasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. Results: The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. Conclusions: These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state ( which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage ( in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Protein aggregates containing alpha-synuclein, beta-amyloid and hyperphosphorylated tau are commonly found during neurodegenerative processes which is often accompanied by the impairment of mitochondrial complex I respiratory chain and dysfunction of cellular systems of protein degradation. In view of this, we aimed to develop an in vitro model to study protein aggregation associated to neurodegenerative diseases using cultured cells from hippocampus, locus coeruleus and substantia nigra of newborn Lewis rats exposed to 0.5, 1, 10 and 25 nM of rotenone, which is an agricultural pesticide, for 48 hours. Results: We demonstrated that the proportion of cells in culture is approximately the same as found in the brain nuclei they were extracted from. Rotenone at 0.5 nM was able to induce alpha-synuclein and beta amyloid aggregation, as well as increased hyperphosphorylation of tau, although high concentrations of this pesticide (over 1 nM) lead cells to death before protein aggregation. We also demonstrated that the 14kDa isoform of alpha-synuclein is not present in newborn Lewis rats. Conclusion: Rotenone exposure may lead to constitutive protein aggregation in vitro, which may be of relevance to study the mechanisms involved in idiopathic neurodegeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have found that MLC-dependent activation of myosin IIB in migrating cells is required to form an extended rear, which coincides with increased directional migration. Activated myosin IIB localizes prominently at the cell rear and produces large, stable actin. lament bundles and adhesions, which locally inhibit protrusion and de. ne the morphology of the tail. Myosin IIA forms de novo. laments away from the myosin IIB-enriched center and back to form regions that support protrusion. The positioning and dynamics of myosin IIA and IIB depend on the self-assembly regions in their coiled-coil C terminus. COS7 and B16 melanoma cells lack myosin IIA and IIB, respectively; and show isoform-specific front-back polarity in migrating cells. These studies demonstrate the role of MLC activation and myosin isoforms in creating a cell rear, the segregation of isoforms during. lament assembly and their differential effects on adhesion and protrusion, and a key role for the noncontractile region of the isoforms in determining their localization and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results: In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 +/- 0.2) x 10(6) M(-1) and resulted in a dissociation constant (KD) of (0.7 +/- 0.1) x 10(-6) M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion: Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiological responses of sugarcane (Succharion officinarum L.) to oxidative stress induced by methyl viologen (paraquat) were examined with respect to photochemical activity, chlorophyll content, lipid peroxidation and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. Thirty-day-old sugarcane plants were sprayed with 0, 2, 4, 6 and 8 mM methyl viologen (MV). Chlorophyll fluorescence was measured after 18 It and biochemical analyses were performed after 24 and 48 h. Concentrations of MV above 2 mM caused significant damage to photosystem II (PSII) activity. Potential and effective quantum efficiency of PSII and apparent electron transport rate were greatly reduced or practically abolished. Both chlorophyll and soluble protein contents steadily decreased with MV concentrations above 2 mM after 24 It of exposure, which became more pronounced after 48 It, achieving a 3-fold decrease. Insoluble protein contents were little affected by MV. Oxidative stress induced by MV was evidenced by increases in lipid peroxidation. Specific activity of SOD increased, even after 48 h of exposure to the highest concentrations of MV, but total activity on a fresh weight basis did not change significantly. Nondenaturing YAGE assayed with H2O2 and KCN showed that treatment with MV did not change Cu/Zn-SOD and MnSOD isoform activities. In contrast, APX specific activity increased at 2 mM MV but then dropped at higher doses. Oxidative damage induced by MV was inversely related to APX activity. It is suggested that the major MV-induced oxidative damages in sugarcane leaves were related to excess H2O2, probably in chloroplasts, caused by an imbalance between SOD and APX activities, in which APX was a limiting step. Reduced photochemical activity allowed the early detection of the ensuing oxidative stress. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the production of prostaglandin E(2) (PGE(2)) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A(2) (PLA(2)), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA(2)s (cytosolic PLA(2) and Ca(2+)-independent PLA(2)) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE(2) levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE(2) production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF(3)), an intracellular PLA(2) inhibitor, but not bromoenol lactone (BEL), an iPLA(2) inhibitor, suppressed the MT-III-induced AA and PGE(2) release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE(2). COX-2 isoform is preeminent over COX-1 for production of PGE(2) stimulated by MT-III. PGE(2) and AA release by MT-III probably is related to cPLA(2) activation. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr = 61,000 under reducing conditions and pI similar to 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated scrine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca2+ and Mg2+). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against I I venom samples of Bothrops, I of Crotalus, and I of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDfNEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom. (C) 2007 Elsevier Inc. All rights reserved.