23 resultados para Sugarcane - Potassium fertilization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The numbers of culturable diazotrophic endophytic bacteria (CDEB) from roots stems and leaves of sugarcane submitted to organic inorganic or no fertilization were compared In order to determine the size of the N(2) fixing populations the Most Probable Number technique (MPN) was used The quantification of diazotrophic bacteria by using the acetylene reduction assay (ARA) was more accurate than observing the bacterial growth in the vials to confirm N(2) fixing capability the detection of gene nifH was performed on a sample of 105 Isolated bacteria The production of extracellular enzymes involved in the penetration of the plants by the bacteria was also studied The results showed that organic fertilization enhances the number of CDEB when compared with conventional fertilization used throughout the growing season The maximum number of bacteria was detected in the roots Roots and stems presented the greatest number of CDEB in the middle of the cropping season and in leaves numbers varied according to the treatment Using two pairs of primers and two different methods the nifH gene was found in 104 of the 105 tested isolates Larger amounts of pectinase were released by isolates from sugarcane treated with conventional fertilizers (66%) whereas larger amounts of cellulase were released by strains isolated from sugarcane treated with organic fertilizers (80%) (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
The objective of the study was assessing the effect of the nitrogen and the aspersion irrigation on the growth and dry matter yield of black oats (Avena strigosa Schreb). The experiment was conducted in the Campus of USP in Pirassununga, Sao Paulo State. In the study were evaluated four nitrogen levels (0, 50, 100 and 150 kg of N ha(-1)) and also the presence or absence of the irrigation. The plant variables evaluated were: mean height, dry matter percentage, yield and growth rate. The results had disclosed to greater height of plant in the irrigated condition, reflecting in the higher production of dry matter. In dry land area, percentage of DM was 24.7% and in irrigated area 18.7%. The nitrogen was significantly only for plant mean height that showed linear fit when carried through the irrigation. The effect of the irrigation was better for the production of black oats than nitrogen.
Resumo:
Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (similar to 370 ppm) and elevated (similar to 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.
Resumo:
P>Modern sugarcane (Saccharum spp.) is the leading sugar crop and a primary energy crop. It has the highest level of `vertical` redundancy (2n = 12x = 120) of all polyploid plants studied to date. It was produced about a century ago through hybridization between two autopolyploid species, namely S. officinarum and S. spontaneum. In order to investigate the genome dynamics in this highly polyploid context, we sequenced and compared seven hom(oe)ologous haplotypes (bacterial artificial chromosome clones). Our analysis revealed a high level of gene retention and colinearity, as well as high gene structure and sequence conservation, with an average sequence divergence of 4% for exons. Remarkably, all of the hom(oe)ologous genes were predicted as being functional (except for one gene fragment) and showed signs of evolving under purifying selection, with the exception of genes within segmental duplications. By contrast, transposable elements displayed a general absence of colinearity among hom(oe)ologous haplotypes and appeared to have undergone dynamic expansion in Saccharum, compared with sorghum, its close relative in the Andropogonea tribe. These results reinforce the general trend emerging from recent studies indicating the diverse and nuanced effect of polyploidy on genome dynamics.
Resumo:
In the present work the distribution of ions in aboveground plant parts was studied in order to establish the suitability of using radiocaesium as a tracer for the plant absorption of nutrients, such as potassium (K(+)) and ammonium (NH(4)(+)). We present the results for the distributions of (137)Cs, (40)K and NH(4)(+) from four tropical plant species: lemon (Citrus aurantifolia), orange (Citrus sinensis), guava (Psidium guajava) and chili pepper (Capsicum frutescens). Activity concentrations of (137)Cs and (40)K were measured by gamma spectrometry and concentrations of free NH(4)(+) ions by a colorimetric method. Similarly to potassium and ammonium, caesium showed a high mobility within the plants, exhibiting the highest values of concentration in the growing parts of the tree (fruits, new leaves, twigs, and barks). A significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The K/Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting that caesium could be a good tracer for (40)K in tropical woody fruit species. Despite the similarity observed for the behaviour of caesium and ammonium in the newly grown plant compartments, (137)Cs was not well correlated with NH(4)(+). Significant temporal changes in the NH(4)(+) concentrations were observed during the development of fruits, while the (137)Cs activity concentration alterations were not of great importance, indicating, therefore, that Cs(+) and free NH(4)(+) ions could have distinct concentration ratios for each particular plant organ. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate the effects of nutrients (nitrogen, zinc and boron) on fungal growth and fumonisins production in corn samples obtained at the beginning of grain formation and at harvest. Three nitrogen doses were applied to the corn plants through soil in combination with three zinc doses and two boron doses during sowing. Mycological analysis of grains, using Dichloran Rose-Bengal Chloramphenicol Agar, collected at the beginning of formation demonstrated a fungal population predominantly of yeasts. Analysis of freshly harvested corn revealed a higher frequency of Penicillium spp. (72%) and F verticillioides (27%). High Performance Liquid Chromatography analysis revealed that 100% of grains were contaminated with fumonisins B, at levels ranging from 0.3 to 24.3 mg/kg and 93% contaminated with fumonisin B(2) at levels ranging from 0.05 to 5.42 mg/kg. Nitrogen (50 kg/ha) in combination with boron (0.5 kg/ha) resulted in an increased fumonisin B2 production. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ethanol production from sugarcane, mainly in Brazil, on the basis of first-generation technology (22.5 billion liters, in 2007/2008 season, in 3.4 million hectares) replaces 1% of the gasoline used in the world today and is highly competitive in economic terms with ethanol produced from other crops in the USA and Europe. In this paper we discuss the potential for sugarcane ethanol expansion from two angles: (1) productivity gains which would allow greater production in the same area and (2) geographical expansion to larger areas. The potential of first-generation technology for the production of ethanol from sugarcane is far from being exhausted. There are gains in productivity of approximately a factor of two from genetically modified varieties and a geographical expansion by a factor of ten of the present level of production in many sugar-producing countries. The replacement of 10% of the gasoline used in the world by ethanol from sugarcane seems possible before second-generation technology reaches technological maturity and possibly economic competitiveness. (C) 2009 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
Potassium content in tea brew was determined by gamma-ray spectroscopy, Using the 1461 keV gamma-ray fro M (40)K, the naturally occurring radioactive isotope of potassium. We measured radiation with a shielded HPGe detector from individual test samples of tea leaves, before and after infusion preparation, and from commercial instant tea powder. The correction factor for the gamma-ray self-absorption in the extended source was determined with the help of Monte-Carlo simulations. This gamma-ray spectroscopy technique enabled the absolute determination of potassium content with a relative uncertainty smaller than 4%, at the one standard deviation confidence level, showing the feasibility of this method. An experiment to evaluate a possible systematic Uncertainty due to K distribution heterogeneity in the sample was performed, with file result that the corresponding relative standard deviation is smaller than 2% at 95% confidence level. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Phosphoribosyl pyrophosphate synthetase (PRS-EC:2.7.6.1) is an important enzyme present in several metabolic pathways, thus forming a complex family of isoenzymes. However, plant PRS enzymes have not been extensively investigated. In this study, a sugarcane prs gene has been characterized from the Sugar Cane Expressed Sequence Tag Genome Project. This gene contains a 984-bp open reading frame encoding a 328-amino acid protein. The predicted amino acid sequence has 77% and 78% amino acid sequence identity to Arabidopsis thaliana and Spinacia oleracea PRS4, respectively. The assignment of sugarcane PRS as a phosphate-independent PRS isoenzyme (Class II PRS) is verified following enzyme assay and phylogenetic reconstruction of PRS homologues. To gain further insight into the structural framework of the phosphate independence of sugarcane PRS, a molecular model is described. This model reveals the formation of two conserved domains elucidating the structural features involved in sugarcane PRS phosphate independence. The recombinant PRS retains secondary structure elements and a quaternary arrangement consistent with known PRS homologues, based on circular dichroism measurements.
Resumo:
Gordonia polyisoprenivorans CCT 7137 was isolated from groundwater contaminated with leachate in an old controlled landfill (Sauo Paulo, Brazil), and cultured in GYM medium at different concentrations of sugarcane molasses (2%, 6%, and 10%). The strain growth was analyzed by monitoring the viable cell counts (c.f.u. mL(-1)) and optical density and EPS production was evaluated at the end of the exponential phase and 24 h after it. The analysis of the viable cell counts showed that the medium that most favored bacterial growth was not the one that favored EPS production. The control medium (GYM) was the one that most favored the strain growth, at the maximum specific growth rate of 0.232 h(-1). Differences in bacterial growth when cultured at three different concentrations of molasses were not observed. Production of EPS, in all culture media used, began during the exponential phase and continued during the growth stationary phase. The highest total EPS production, after 24 h of stationary phase, was observed in 6% molasses medium (172.86 g L(-1)) and 10% (139.47 g L(-1)) and the specific total EPS production was higher in 10% molasses medium (39.03 x10(-11)g c.f.u.(-1)). After the exponential phase, in 2%, 6%, and 10% molasses media, a higher percentage of free exopolysaccharides (EPS) was observed, representing 88.4%, 62.4%, and 64.2% of the total, respectively. A different result was observed in pattern medium, which presented EPS made up of higher percentage of capsular EPS (66.4% of the total). This work is the first study on EPS production by G. polyisoprenivorans strain in GYM medium and in medium utilizing sugarcane molasses as the sole nutrient source and suggests its potential use for EPS production by G. polyisoprenivorans CCT 7137 aiming at application in biotechnological processes.
Resumo:
Ion channels have been assigned a pivotal importance in various sperm functions and are therefore promising targets for contraceptive development. The lack of data on channel functionality and pharmacology has hampered this goal. This is a consequence of technical problems of applying electrophysiological techniques to spermatozoa due to their small size and form. By using a laminin coating to increase adherence of spermatozoa and nystatin in the patch pipette for pore formation, we have adapted the whole-cell recording technique to study currents in mature uncapacitated bovine spermatozoa. Employing these conditions, in the head region, patched spermatozoa could be transferred into the whole-cell configuration. For the first time we document an outward rectifying current in mature bovine spermatozoa was blocked by tetraethyl ammonium (TEA) chloride. The observation of a shift in the reversal potential as a response to changes in the extracellular concentration of K+ ions allowed us to identify this current as K+ selective. This result shows that K+ channels in the head region of mature uncapacitated bovine spermatozoa can be suitably investigated using the whole-cell recording patch-clamp technique.
Resumo:
Sugarcane is an important crop that has recently become subject to attacks from the weevil Sphenophorus levis, which is not efficiently controlled with chemical insecticides. This demands the development of new control devices for which digestive physiology data are needed. In the present study, ion-exchange chromatography of S. levis whole midgut homogenates, together with enzyme assays with natural and synthetic substrates and specific inhibitors, demonstrated that a cysteine proteinase is a major proteinase, trypsin is a minor one and chymotrypsin is probably negligible. Amylase, maltase and the cysteine proteinase occur in the gut contents and decrease throughout the midgut; trypsin is constant in the entire midgut, whereas a membrane-bound aminopeptidase predominates in the posterior midgut. The cysteine proteinase was purified to homogeneity through ion-exchange chromatography. The purified enzyme had a mass of 37 kDa and was able to hydrolyze Z-Phe-Arg-MCA and Z-Leu-Arg-MCA with k(cat)/K(m) values of 20.0 +/- 1.1 mu M(-1) s(-1) and 30.0 +/- 0.5 mu M(-1) s(-1), respectively, but not Z-Arg-Arg-MCA. The combined results suggest that protein digestion starts in the anterior midgut under the action of a cathepsin L-like proteinase and ends on the surface of posterior midgut cells. All starch digestion takes place in anterior midgut. These data will be instrumental to developing S. levis-resistant sugarcane. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The stereoselective nucleophilic addition of potassium alkyltrifluoroborates to cyclic N-acyliminium ions derived from N-benzyl-3,4,5-triacetoxy-pyrrolidin-2-one, which affords 5-substituted-pyrrolidin-2-ones, is described. The products are obtained in moderate to good yields and are produced predominantly as the anti diastereomer.
Resumo:
Brazilian sugarcane spirits were analyzed to elucidate similarities and dissimilarities by principal component analysis. Nine aldehydes, six alcohols, and six metal cations were identified and quantified. Isobutanol (LD 202.9 mu gL-1), butiraldehyde (0.08-0.5 mu gL-1), ethanol (39-47% v/v), and copper (371-6068 mu gL-1) showed marked similarities, but the concentration levels of n-butanol (1.6-7.3 mu gL-1), sec-butanol (LD 89 mu gL-1), formaldehyde (0.1-0.74 mu gL-1), valeraldehyde (0.04-0.31 mu gL-1), iron (8.6-139.1 mu gL-1), and magnesium (LD 1149 mu gL-1) exhibited differences from samples.
Resumo:
Nasal mucociliary system is the first line of defense of the upper airways and may be affected acutely by exposure to particulate matter (PM) from biomass burning. Several epidemiologic studies have demonstrated a consistent association between levels of air pollution from biomass burning with increases in hospitalization for respiratory diseases and mortality. To determine the acute effects of exposure to particulate matter from biomass burning in nasal mucociliary transport by saccharin transit time (STT) test, we studied thirty-three non-smokers and twelve light smokers sugarcane cutters in two periods: pre-harvest season and 4 h after harvest at the first day after biomass burning. Lung function, exhaled carbon monoxide (CO), nasal symptoms questionnaire and mucociliary clearance (MC) were assessed. Exhaled CO was increased in smokers compared to non-smokers but did not change significantly after harvest. In contrast, SIT was similar between smokers and non-smokers and decreased significantly after harvest in both groups (p < 0.001). Exposure to PM from biomass burning did not influence nasal symptoms. Our results suggest that acute exposure to particulate matter from sugarcane burned affects mucociliary clearance in smokers and non-smokers workers in the absence of symptoms. (C) 2011 Elsevier Ltd. All rights reserved.