8 resultados para Stochastic simulation methods
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The Madden-Julian oscillation (MJO) is the most prominent form of tropical intraseasonal variability. This study investigated the following questions. Do inter-annual-to-decadal variations in tropical sea surface temperature (SST) lead to substantial changes in MJO activity? Was there a change in the MJO in the 1970s? Can this change be associated to SST anomalies? What was the level of MJO activity in the pre-reanalysis era? These questions were investigated with a stochastic model of the MJO. Reanalysis data (1948-2008) were used to develop a nine-state first order Markov model capable to simulate the non-stationarity of the MJO. The model is driven by observed SST anomalies and a large ensemble of simulations was performed to infer the activity of the MJO in the instrumental period (1880-2008). The model is capable to reproduce the activity of the MJO during the reanalysis period. The simulations indicate that the MJO exhibited a regime of near normal activity in 1948-1972 (3.4 events year(-1)) and two regimes of high activity in 1973-1989 (3.9 events) and 1990-2008 (4.6 events). Stochastic simulations indicate decadal shifts with near normal levels in 1880-1895 (3.4 events), low activity in 1896 1917 (2.6 events) and a return to near normal levels during 1918-1947 (3.3 events). The results also point out to significant decadal changes in probabilities of very active years (5 or more MJO events): 0.214 (1880-1895), 0.076 (1896-1917), 0.197 (1918-1947) and 0.193 (1948-1972). After a change in behavior in the 1970s, this probability has increased to 0.329 (1973-1989) and 0.510 (1990-2008). The observational and stochastic simulations presented here call attention to the need to further understand the variability of the MJO on a wide range of time scales.
Resumo:
The issue of smoothing in kriging has been addressed either by estimation or simulation. The solution via estimation calls for postprocessing kriging estimates in order to correct the smoothing effect. Stochastic simulation provides equiprobable images presenting no smoothing and reproducing the covariance model. Consequently, these images reproduce both the sample histogram and the sample semivariogram. However, there is still a problem, which is the lack of local accuracy of simulated images. In this paper, a postprocessing algorithm for correcting the smoothing effect of ordinary kriging estimates is compared with sequential Gaussian simulation realizations. Based on samples drawn from exhaustive data sets, the postprocessing algorithm is shown to be superior to any individual simulation realization yet, at the expense of providing one deterministic estimate of the random function.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.
Resumo:
The triple- and quadruple-escape peaks of 6.128 MeV photons from the (19)F(p,alpha gamma)(16)O nuclear reaction were observed in an HPGe detector. The experimental peak areas, measured in spectra projected with a restriction function that allows quantitative comparison of data from different multiplicities, are in reasonably good agreement with those predicted by Monte Carlo simulations done with the general-purpose radiation-transport code PENELOPE. The behaviour of the escape intensities was simulated for some gamma-ray energies and detector dimensions; the results obtained can be extended to other energies using an empirical function and statistical properties related to the phenomenon. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.
Resumo:
Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.