3 resultados para Stevens, Daniel
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background and Objective: Stevens-Johnson syndrome (SJS) is a life-threatening dermatosis characterized by epidermal sloughing and stomatitis. We report the case of a 7-year-old boy in whom laser phototherapy (LPT) was highly effective in reversing the effects of an initial episode of SJS that had apparently developed in association with treatment with phenobarbital for a seizure disorder. The patient was first seen in the intensive care unit (ICU) of our institution with fever, cutaneous lesions on his extremities, trunk, face, and neck; mucosal involvement of his genitalia and eyes (conjunctivitis); ulcerative intraoral lesions; and swollen, crusted, and bleeding lips. He reported severe pain at the sites of his intraoral and skin lesions and was unable to eat, speak, swallow, or open his mouth. Materials and Methods: Trying to prevent and minimize secondary infections, gastric problems, pain, and other complications, the patient was given clindamycin, ranitidine, dipyrone, diphenhydramine (Benadryl) drops, and morphine. In addition, he was instructed to use bicarbonate solution and Ketoconazole (Xylogel) in the oral cavity. Because of the lack of progress of the patient, the LPT was selected. Results: At 5 days after the initial session of LPT, the patient was able to eat gelatin, and on the following day, the number and severity of his intraoral lesions and his labial crusting and swelling had diminished. By 6 days after his initial session of LPT, most of the patient's intraoral lesions had disappeared, and the few that remained were painless; the patient was able to eat solid food by himself and was removed from the ICU. Ten sessions of LPT were conducted in the hospital. The patient underwent three further and consecutive sessions at the School of Dentistry, when complete healing of his oral lesions was observed. Conclusion: The outcome in this case suggests that LPT may be a new adjuvant modality for SJS complications.
Resumo:
Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.
Resumo:
The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).