89 resultados para Stereographic Projections
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We consider brightness/contrast-invariant and rotation-discriminating template matching that searches an image to analyze A for a query image Q We propose to use the complex coefficients of the discrete Fourier transform of the radial projections to compute new rotation-invariant local features. These coefficients can be efficiently obtained via FFT. We classify templates in ""stable"" and ""unstable"" ones and argue that any local feature-based template matching may fail to find unstable templates. We extract several stable sub-templates of Q and find them in A by comparing the features. The matchings of the sub-templates are combined using the Hough transform. As the features of A are computed only once, the algorithm can find quickly many different sub-templates in A, and it is Suitable for finding many query images in A, multi-scale searching and partial occlusion-robust template matching. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.
Resumo:
The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.
Resumo:
The ventral tegmental area (VTA) is a nodal link in reward circuitry. Based on its striatal output, it has been subdivided in a caudomedial part which targets the ventromedial striatum, and a lateral part which targets the ventrolateral striatum [Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27-78]. Whether these two VTA parts are interconnected and to what extent the VTA innervates the substantia nigra compacta (SNc) and retrorubral nucleus (RR) are critical issues for understanding information processing in the basal ganglia. Here, VTA projections to the VTA-nigral complex were examined in rats, using Phaseolus vulgaris leucoagglutinin (PHA-L) as anterograde tracer. The results show that the dorsolateral VTA projects to itself, as well as to the dorsal tier of the SNc and RR, largely avoiding the caudomedial VTA. The ventrolateral VTA innervates mainly the interfascicular nucleus. The components of the caudomedial VTA (the interfascicular, paranigral and caudal linear nuclei) are connected with each other. In addition, the caudomedial VTA (especially the paranigral and caudal linear nuclei) innervates the lateral VTA, and, to a lesser degree, the SNc and RR. The caudal pole of the VTA sends robust, bilateral projections to virtually all the VTA-nigral complex, which terminate in the dorsal and ventral tiers. Modest inputs from the medial supramammillary nucleus to ventromedial parts of the VTA-nigral complex were also identified. In double-immunostained sections, PHA-L-labeled varicosities were sometimes found apposed to tyrosine hydroxylase-positive neurons in the ventral mesencephalon. Overall, the results underscore that VTA projections to the VTA-nigral complex are substantial and topically organized. In general, these projections, like the spiralated striato-nigro-striatal loops, display a medial-to-lateral organization. This anatomical arrangement conceivably permits the ventromedial striatum to influence the activity of the lateral striatum. The caudal pole of the VTA appears to be a critical site for a global recruitment of the mesotelencephalic system. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.
Resumo:
This study analyzed the effects of the unilateral removal and dissection of the masseter muscle on the facial growth of young rats. A total of 30 one-month-old Wistar rats were used. Unilateral complete removal of the masseter muscle was performed in the removal group, and detachment followed by repositioning of the masseter muscle was performed in the dissection group, while only surgical access was performed in the sham-operated group. The animals were sacrificed at three months of age. Axial radiographic projections of the skulls and lateral projections of the hemimandibles were taken. Cephalometric evaluations were made and the values obtained were submitted to statistical analyses. In the removal group, there were contour alterations of the angular process, and a significant homolateral difference in the length of the maxilla and a significant bilateral difference in the height of the mandibular body and the length of the mandible were observed. Comparison among groups revealed significance only in the removal group. It was concluded that the experimental removal of the masseter muscle during the growing period in rats induced atrophic changes in the angular process, as well as asymmetry of the maxilla and shortening of the whole mandible.
Resumo:
Este trabalho investiga a variabilidade do Sistema de Monções da América do Sul (SMAS) sobre o Brasil com particular interesse na região do cerrado brasileiro. O início, final e total de precipitação durante as monções de verão são examinados utilizando estimativas de precipitação por satélite (pêntadas) do Global Precipitation Climatology Project (GPCP) entre 1979-2004. Analogamente, as características do regime de monção simuladas pelo modelo climático global acoplado MIROC (Model for interdisciplinary Research on Climate) do IPCC (Intergovernmental Panel for Climate Change) são examinadas em dois cenários distintos: o clima do século XX (1981-2000) e o clima em uma condição com o dobro da concentração atual de CO2 (2xCO2) na atmosfera (2061-2080). Mostra-se que a variabilidade espacial do início da monção de verão sobre o cerrado na simulação do clima do século XX pelo MIROC corresponde bem às observações. Além disso, há indicação de uma mudança das caudas da distribuição sazonal da precipitação no Cerrado para um cenário com 2xCO2, comparativamente com o clima presente. Este resultado sugere uma mudança na probabilidade de ocorrência de eventos extremos (secos ou úmidos) em um cenário com 2xCO2 sobre o cerrado, o que de acordo com o MIROC, indica uma maior exposição da região às conseqüências de possíveis mudanças climáticas resultantes do aumento de gases de efeito estufa.
Resumo:
The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.
Resumo:
The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.
Resumo:
Na tentativa de evitar algumas das dificuldades associadas à osteotomia pélvica tripla (OPT), foi desenvolvido experimentalmente o método de aplicação de cunha na junção sacroilíaca para aumentar a ventroversão acetabular. O objetivo deste estudo foi aplicar as técnicas de cunha sacroilíaca e OPT em cadáveres e avaliar radiograficamente a eficácia da ventroversão acetabular. Para tal, foram utilizados 10 cadáveres de cães, adultos, com 15-25 kg. Em cada hemipelve direita foi realizada OPT com placas de 20° e 40°. Na hemipelve esquerda foram aplicadas cunhas nas articulações sacroilíacas de 20° e 40°. Avaliações radiográficas em projeções ventrodorsais foram realizadas para mensuração da cobertura acetabular à cabeça femoral nas duas técnicas. De acordo com os dados obtidos pode-se observar que não houve diferença entre a técnica de OPT e o uso de cunha sacroilíaca utilizando implantes de 20° e 40°, mas ocorreu diferença significativa (p<0,05) entre os cães antes e após a aplicação dos implantes de 20° e 40°, e também entre os que receberam implantes de 20° e os de 40°. A aplicação de cunha sacroilíaca produziu resultados semelhantes à OPT, e também se mostrou como de mais fácil aplicação.
Resumo:
Background: Expectation is a very potent pain modulator in both humans and animals. There is evidence that pain transmission neurons are modulated by expectation preceding painful stimuli. Nonetheless, few studies have examined the influence of pain expectation on the pain-related neuronal activity and the functional connectivity within the central nociceptive network. Results: This study used a tone-laser conditioning paradigm to establish the pain expectation in rats, and simultaneously recorded the anterior cingulate cortex (ACC), the medial dorsal thalamus (MD), and the primary somatosensory cortex (SI) to investigate the effect of pain expectation on laser-induced neuronal responses. Cross-correlation and partial directed coherence analysis were used to determine the functional interactions within and between the recorded areas during nociceptive transmission. The results showed that under anticipation condition, the neuronal activity to the auditory cue was significantly increased in the ACC area, whereas those to actual noxious stimuli were enhanced in all the recorded areas. Furthermore, neuronal correlations within and between these areas were significantly increased under conditions of expectation compared to those under non-expectation conditions, indicating an enhanced synchronization of neural activity within the pain network. In addition, information flow from the medial (ACC and MD) to the lateral (SI cortex) pain pathway increased, suggesting that the emotion-related neural circuits may modulate the neuronal activity in the somatosensory pathway during nociceptive transmission. Conclusion: These results demonstrate that the nociceptive processing in both medial and lateral pain systems is modulated by the expectation of pain.
Resumo:
Background: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.
Resumo:
Previous studies have shown that a particular site in the periaqueductal gray (PAG), the rostrolateral PAG, influences the motivation drive to forage or hunt. To have a deeper understanding on the putative paths involved in the decision-making process between foraging, hunting, and other behavioral responses, in the present investigation, we carried out a systematic analysis of the neural inputs to the rostrolateral PAG (rlPAG), using Fluorogold as a retrograde tracer. According to the present findings, the rlPAG appears to be importantly driven by medial prefrontal cortical areas involved in controlling attention-related and decision-making processes. Moreover, the rlPAG also receives a wealth of information from different amygdalar, hypothalamic, and brainstem sites related to feeding, drinking, or hunting behavioral responses. Therefore, this unique combination of afferent connections puts the rlPAG in a privileged position to influence the motivation drive to choose whether hunting and foraging would be the most appropriate adaptive responses. Copyright (C) 2009 Sandra Regina Mota-Ortiz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
Background: Placentas of guinea pig-related rodents are appropriate animal models for human placentation because of their striking similarities to those of humans. To optimize the pool of potential models in this context, it is essential to identify the occurrence of characters in close relatives. Methods: In this study we first analyzed chorioallantoic placentation in the prea, Galea spixii, as one of the guinea pig's closest relatives. Material was collected from a breeding group at the University of Mossoro, Brazil, including 18 individuals covering an ontogenetic sequence from initial pregnancy to term. Placentas were investigated by means of histology, electron microscopy, immunohistochemistry (vimentin, alpha-smooth muscle actin, cytokeration) and proliferation activity (PCNA). Results: Placentation in Galea is primarily characterized by an apparent regionalization into labyrinth, trophospongium and subplacenta. It also has associated growing processes with clusters of proliferating trophoblast cells at the placental margin, internally directed projections and a second centre of proliferation in the labyrinth. Finally, the subplacenta, which is temporarily supplied in parallel by the maternal and fetal blood systems, served as the center of origin for trophoblast invasion. Conclusion: Placentation in Galea reveals major parallels to the guinea pig and other caviomorphs with respect to the regionalization of the placenta, the associated growing processes, as well as trophoblast invasion. A principal difference compared to the guinea pig occurred in the blood supply of the subplacenta. Characteristics of the invasion and expanding processes indicate that Galea may serve as an additional animal model that is much smaller than the guinea pig and where the subplacenta partly has access to both maternal and fetal blood systems.
Resumo:
Tropical forests are characterized by diverse assemblages of plant and animal species compared to temperate forests. Corollary to this general rule is that most tree species, whether valued for timber or not, occur at low densities (<1 adult tree ha(-1)) or may be locally rare. In the Brazilian Amazon, many of the most highly valued timber species occur at extremely low densities yet are intensively harvested with little regard for impacts on population structures and dynamics. These include big-leaf mahogany (Swietenia macrophylla), ipe (Tabebuia serratifolia and Tabebuia impetiginosa), jatoba (Hymenaea courbaril), and freijo cinza (Cordia goeldiana). Brazilian forest regulations prohibit harvests of species that meet the legal definition of rare - fewer than three trees per 100 ha - but treat all species populations exceeding this density threshold equally. In this paper we simulate logging impacts on a group of timber species occurring at low densities that are widely distributed across eastern and southern Amazonia, based on field data collected at four research sites since 1997, asking: under current Brazilian forest legislation, what are the prospects for second harvests on 30-year cutting cycles given observed population structures, growth, and mortality rates? Ecologically `rare` species constitute majorities in commercial species assemblages in all but one of the seven large-scale inventories we analyzed from sites spanning the Amazon (range 49-100% of total commercial species). Although densities of only six of 37 study species populations met the Brazilian legal definition of a rare species, timber stocks of five of the six timber species declined substantially at all sites between first and second harvests in simulations based on legally allowable harvest intensities. Reducing species-level harvest intensity by increasing minimum felling diameters or increasing seed tree retention levels improved prospects for second harvests of those populations with a relatively high proportion of submerchantable stems, but did not dramatically improve projections for populations with relatively flat diameter distributions. We argue that restrictions on logging very low-density timber tree populations, such as the current Brazilian standard, provide inadequate minimum protection for vulnerable species. Population declines, even if reduced-impact logging (RIL) is eventually adopted uniformly, can be anticipated for a large pool of high-value timber species unless harvest intensities are adapted to timber species population ecology, and silvicultural treatments are adopted to remedy poor natural stocking in logged stands. (C) 2008 Elsevier B.V. All rights reserved.