2 resultados para Stamp collecting
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Yano Y, Cesar KR, Araujo M, Rodrigues Jr. AC, Andrade LC, Magaldi AJ. Aquaporin 2 expression increased by glucagon in normal rat inner medullary collecting ducts. Am J Physiol Renal Physiol 296: F54-F59, 2009. First published October 1, 2008; doi: 10.1152/ajprenal.90367.2008.-It is well known that Glucagon (Gl) is released after a high protein diet and participates in water excretion by the kidney, principally after a protein meal. To study this effect in in vitro perfused inner medullary collecting ducts (IMCD), the osmotic water permeability (Pf; mu m/s) at 37 degrees C and pH 7.4 in normal rat IMCDs (n = 36) perfused with Ringer/HCO(3) was determined. Gl (10(-7) M) in absence of Vasopressin (AVP) enhanced the Pf from 4.38 +/- 1.40 to 11.16 +/- 1.44 mu m/s (P < 0.01). Adding 10(-8), 10(-7), and 10(-6) M Gl, the Pf responded in a dose-dependent manner. The protein kinase A inhibitor H8 blocked the Gl effect. The specific Gl inhibitor, des-His(1)-[Glu(9)] glucagon (10(-7) M), blocked the Gl-stimulated Pf but not the AVP-stimulated Pf. There occurred a partial additional effect between Gl and AVP. The cAMP level was enhanced from the control 1.24 +/- 0.39 to 59.70 +/- 15.18 fm/mg prot after Gl 10(-7) M in an IMCD cell suspension. The immunoblotting studies indicated an increase in AQP2 protein abundance of 27% (cont 100.0 +/- 3.9 vs. Gl 127.53; P = 0.0035) in membrane fractions extracted from IMCD tubule suspension, incubated with 10(-6) M Gl. Our data showed that 1) Gl increased water absorption in a dose-dependent manner; 2) the anti-Gl blocked the action of Gl but not the action of AVP; 3) Gl stimulated the cAMP generation; 4) Gl increased the AQP2 water channel protein expression, leading us to conclude that Gl controls water absorption by utilizing a Gl receptor, rather than a AVP receptor, increasing the AQP2 protein expression.
Resumo:
In the present study, we compared 2 methods for collecting ixodid ticks on the verges of animal trails in a primary Amazon forest area in northern Brazil. (i) Dragging: This method was based on passing a 1-m(2) white flannel over the vegetation and checking the flannel for the presence of caught ticks every 5-10 m. (ii) Visual search: This method consisted of looking for guesting ticks on the tips of leaves of the vegetation bordering animal trails in the forest. A total of 103 adult ticks belonging to 4 Amblyomma species were collected by the visual search method on 5 collecting dates, while only 44 adult ticks belonging to 3 Amblyomma species were collected by dragging on 5 other collecting dates. These values were statistically different (Mann-Whitney Test, P = 0.0472). On the other hand, dragging was more efficient for subadult ticks, since no larva or nymph was collected by visual search, whereas 18 nymphs and 7 larvae were collected by dragging. The visual search method proved to be suitable for collecting adult ticks in the Amazon forest: however, field studies should include a second method, such as dragging in order to maximize the collection of subadult ticks. Indeed, these 2 methods can be performed by a single investigator at the same time, while he/she walks on an animal trail in the forest. (C) 2010 Elsevier GmbH. All rights reserved.