3 resultados para Stable carbon and oxygen isotopes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved
Resumo:
Carbon and nitrogen biogeochemical cycles in savannas are strongly regulated by the seasonal distribution of precipitation and pulses of nutrients released during the wetting of the dry soil and are critical to the dynamics of microorganisms and vegetation. The objective of this study was to investigate the spatial and temporal variability of C and N isotope ratios as indicators of the cycling of these elements in a cerrado sensu stricto area, within a protected area in a State Park in the state of São Paulo, Brazil. The foliar δ13C and δ15N values varied from -33.6 to -24.4 ‰ and -2.5 to 4.5 ‰, respectively. The δ13C values showed a consistent relationship with canopy height, revealing the importance of structure of the canopy over the C isotopic signature of the vegetation. Carbon isotopic variations associated with the length of the dry season indicated the importance of recent fixed C to the integrated isotopic signature of the leaf organic C. The studied Cerrado species showed a depleted foliar δ15N, but a wide range of foliar Nitrogen with no difference among canopy heights. However, seasonal variability was observed, with foliar δ15N values being higher in the transition period between dry and rainy seasons. The variation of the foliar C and N isotope ratios presented here was consistent with highly diverse vegetation with high energy available but low availability of water and N.
Resumo:
Objectives: Amazonian populations are experiencing dietary changes characteristic of the nutrition transition. However, the degree of change appears to vary between urban and rural settings. To investigate this process, we determined carbon and nitrogen stable isotope ratios in fingernails and dietary intake of Amazonian populations living along a rural to urban continuum along the Solimoes River in Brazil. Methods: Carbon and nitrogen stable isotope ratios were analyzed from the fingernails of 431 volunteer subjects living in different settings ranging from rural villages, small towns to urban centers along the Solimoes River. Data from 200 dietary intake surveys were also collected using food frequency questionnaires and 24-h recall interviews in an effort to determine qualitative aspects of diet composition. Results: Fingernail delta(13)C values (mean standard deviation) were -23.2 +/- 1.3, 20.2 +/- 1.5, and 17.4 +/- 1.3 parts per thousand and delta(15)N values were 11.8 +/- 0.6, 10.4 +/- 0.8, and 10.8 +/- 0.7 parts per thousand for those living in rural villages, small towns, and major cities, respectively. We found a gradual increase in the number of food items derived from C(4) plant types (meat and sugar) and the replacement of food items derived from C(3) plant types (fish and manioc flour) with increasing size of urban centers. Conclusion: Increasing urbanization in the Brazilian Amazon is associated with a significant change in food habits with processed and industrialized products playing an increasingly important role in the diet and contributing to the nutrition transition in the region. Am. J. Hum. Biol. 23:642-650, 2011. (C) 2011 Wiley-Liss, Inc.