2 resultados para Speci
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objective: To evaluate the precision of three-dimensional ultrasonography (3DUS) in estimating the ipsilateral lung volume and the potential of this measurement to predict neonatal death in congenital diaphragmatic hernia (CDH). Methods: Between January 2002 and December 2004, the ipsilateral lung volumes were assessed by 3DUS using the technique of rotation of the multiplan imaging in 39 fetuses with CDH. The observed/ expected ipsilateral lung volume ratios (o/e-IpsiFLVR) were compared to the lung/head ratios (LHR) and to the observed/ expected total fetal lung volume ratios (o/e-TotFLVR) as well as to postnatal death. Results: Ipsilateral lung volumes (median 0.12, range 0.01-0.66) were more reduced than the total lung volumes (median 0.52, range 0.11-0.95, p < 0.001) in CDH. The bias and precision of 3DUS in estimating ipsilateral lung volumes were -0.61 and 0.99 cm 3, respectively, with absolute limits of agreement from -2.56 to +1.33 cm(3). The o/e-IpsiFLVR was lower in neonatal death cases (median 0.09, range 0.01-0.46) than in survivals (median 0.18, range 0.01-0.66), but this difference was not statistically significance (p > 0.05). The sensitivity, speci-ficity, (positive and negative) predictive values and accuracy of o/e-IpsiFLVR in predicting neonatal death was 52.6% (10/19), 83.3% (10/12), 83.3% (10/12), 52.6% (10/19) and 64.5% (20/31), respectively. Conclusion: Although the ipsilateral lung volume can be measured by 3DUS, it cannot be used to predict neonatal death when considering it alone. However, it is important to measure it to calculate the total fetal lung volumes as the o/e-TotFLVR has the best efficacy in predicting neonatal death in isolated CDH. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Goniosomatine harvestmen have strongly armed pedipalps, generally large bodies and, commonly, very long legs (sometimes more than 20 cm), and are distributed in the Brazilian Atlantic forest, from southern Bahia to Santa Catarina. Since they are conspicuous animals and individuals of some species tend to concentrate in caves (and also under rock boulders), they have been (and still are) the target of several studies, especially those focusing on reproductive and defensive behavior, population ecology, physiology, chromosomes, etc. In spite of their importance for biological studies (some species constitute important and frequently used models for these studies), the taxonomy of Goniosomatinae has faced some problems, including misidentification, a large number of undescribed species and the lack of a phylogenetic hypothesis for the relationships among its species (which would allow evolutionary studies to be made). The last taxonomic changes in the subfamily were made 60 years ago. Considering a taxonomic revision and cladistic analysis of the subfamily to be of paramount importance, the main scope of the present paper is to provide a cladistic analysis and taxonomic revision of the species of Goniosomatinae and a new arrangement of genera (and species). The main taxonomic changes are given as follows. Six genera are recognised within the subfamily: Goniosoma; the newly described genus Pyatan; the reestablished genera Serracutisoma, Heteromitobates and Mitogoniella; and Acutisoma. New generic synonyms include: Glyptogoniosoma = Goniosomella = Lyogoniosoma = Metalyogoniosoma = Xulapona = Goniosoma, Acutisomelloides = Pygosomoides = Spelaeosoma = Serracutisoma; and Acutisomella = Heteromitobates. Newly described species include: Goniosoma capixaba; G. apoain; Pyatan insperatum DaSilva, Stefanini-Jim & Gnaspini; Serracutisoma pseudovarium; S. fritzmuelleri; S. guaricana; Heteromitobates anarchus; H. harlequin; H. alienus; Mitogoniella taquara; M. unicornis; and Acutisoma coriaceum. New combinations include: Goniosoma macracanthum (Mello-Leitao, 1922); G. unicolor (Mello-Leitao, 1932); G. carum (Mello-Leitao, 1936); Serracutisoma proximum (Mello-Leitao, 1922); S. banhadoae (Soares & Soares, 1947); S. molle (Mello-Leitao, 1933); S. thalassinum (Simon, 1879); S. catarina (Machado, Pinto-da-Rocha & Ramires, 2002); S. inerme (Mello-Leitao, 1927); S. spelaeum (MelloLeitao, 1933); Heteromitobates inscriptus (Mello-Leitao, 1922); H. albiscriptus (Mello-Leitao, 1932); Mitogoniella modesta (Perty, 1833); and M. badia (Koch, 1839). Reestablished combinations include: Mitogoniella indistincta MelloLeitao, 1936 and Acutisoma longipes Roewer, 1913. New speci. c synonyms include: Acutisomella cryptoleuca = Acutisomella intermedia = Goniosoma junceum = Goniosoma patruele = Goniosoma xanthophthalmum = Metalyogoniosoma unum = Goniosoma varium, Goniosoma geniculatum = Goniosoma venustum; Goniosomella perlata = Progoniosoma minense = Goniosoma vatrax, Glyptogoniosoma perditum = Progoniosoma cruciferum = Progoniosoma tijuca = Goniosoma dentipes; Leitaoius iguapensis = Leitaoius viridifrons = Serracutisoma proximum; Acutisoma marumbicola = Acutisoma patens = Serracutisoma thalassinum; Progoniosoma tetrasetae = Serracutisoma inerme; and Acutisoma monticola = Leitaoius nitidissimus = Leitaoius xanthomus = Mitogoniella mutila = Acutisoma longipes. The following species are considered species inquirenda: Goniosoma lepidum Gervais, 1844; G. monacanthum Gervais, 1844; G. obscurum Perty, 1833; G. versicolor Perty, 1833; and Mitogoniella badia (Koch, 1839). The monotpic genus Goniosomoides Mello-Leitao, 1932 (and its species, G. viridans Mello-Leitao, 1932) is removed from Goniosomatinae and considered incertae sedis.