15 resultados para Soybean biodiesel

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The catalytic ethanolysis of soybean oil with commercial immobilized lipase type B from Candida antarctica to yield ethyl esters (biodiesel) has been investigated. Transesterification was monitored with respect to the following parameters: quantity of biocatalyst, reaction time, amount of water added and turnover of lipase. The highest yields of biodiesel (87% by (1)H NMR; 82.9% by GC) were obtained after a reaction time of 24 h at 32 degrees C in the presence of lipase equivalent to 5.0% (w/w) of the amount of soybean oil present. The production of ethyl esters by enzymatic ethanolysis was not influenced by the addition of water up to 4.0% (v/v) of the alcohol indicating that it is possible to use hydrated ethanol in the production of biodiesel catalyzed by lipase. The immobilized enzyme showed high stability under moderate reaction conditions and retained its activity after five production cycles. The (1)H NMR methodology elaborated for the quantification of biodiesel in unpurified reaction mixtures showed good correlations between the signal areas of peaks associated with the alpha-methylene groups of the ethyl esters and those of the triacyl-glycerides in residual soybean oil. Monoacylglycerides, diacylglycerides and triglycerides could also be detected and quantified in the crude biodiesel using (1)H NMR spectroscopic and GC-FID chromatographic methods. The biodiesel production by enzymatic catalysis was promising. In this case, was produced a low concentration of glycerol (0.74%) and easily removed by water extraction. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to apply response surface methodology to estimate the emulsifying capacity and stability of mixtures containing isolated and textured soybean proteins combined with pectin and to evaluate if the extrusion process affects these interfacial properties. A simplex-centroid design was applied to the model emulsifying activity index (EAI), average droplet size (D-[4.3]) and creaming inhibition (Cl%) of the mixtures. All models were significant and able to explain more than 86% of the variation. The high predictive capacity of the models was also confirmed. The mean values for EAI, D-[4.3] and Cl% observed in all assays were 0.173 +/- 0.015 mn, 19.2 +/- 1.0 mu m and 53.3 +/- 2.6%, respectively. No synergism was observed between the three compounds. This result can be attributed to the low soybean protein solubility at pH 6.2 (<35%). Pectin was the most important variable for improving all responses. The emulsifying capacity of the mixture increased 41% after extrusion. Our results showed that pectin could substitute or improve the emulsifying properties of the soybean proteins and that the extrusion brings additional advantage to interfacial properties of this combination. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to encapsulate casein hydrolysate by spray drying with soybean protein isolate (SPI) as wall material to attenuate the bitter taste of that product. Two treatments were prepared: both with 12 g/100 g solids and containing either two proportions of SPI: hydrolysate (70:30 and 80:20), called M1 and M2, respectively. The samples were evaluated for morphological characteristics (SEM), particle size, hygroscopicity, solubility, hydrophobicity, thermal behavior and bitter taste with a trained sensory panel using a paired-comparison test (non-encapsulated samples vs. encapsulated samples). Microcapsules had a continuous wall, many concavities, and no porosity. Treatments M1 and M2 presented average particle sizes of 11.32 and 9.18 mu m, respectively. The wall material and/or the microencapsulation raised the hygroscopicity of the hydrolysate since the free hydrolysate had hygroscopicity of 53 g of water/100 g of solids and M1 and M2 had 106.99 and 102.19 g of water/100 g of solids, respectively. However, the hydrophobicity decreases, the absence of a peak in encapsulated hydrolysates, and the results of the panel sensory test considering the encapsulated samples less bitter (p < 0.05) than the non-encapsulated, showed that spray drying with SPI was an efficient method for microencapsulation and attenuation of the bitter taste of the casein hydrolysate. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Densities and viscosities of five vegetable oils (Babassu oil, Buriti oil, Brazil nut oil, macadamia oil, and grape seed oil) and of three blends of Buriti oil and soybean oil were measured as a function of temperature and correlated by empirical equations. The estimation capability of two types of predictive methodologies was tested using the measured data. The first group of methods was based on the fatty acid composition of the oils, while the other was based on their triacylglycerol composition, as a multicomponent system. In general, the six models tested presented a good representation of the physical properties considered in this work. A simple method of calculation is also proposed to predict the dynamic viscosity of methyl and ethyl ester biodiesels, based on the fatty acid composition of the original oil. Data presented in this work and the developed model can be valuable for designing processes and equipment for the edible oil industry and for biodiesel production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a group contribution method is proposed for the estimation of viscosity of fatty compounds and biodiesel esters as a function of the temperature. The databank used for regression of the group contribution parameters (1070 values for 65 types of substances) included fatty compounds, such as fatty acids, methyl and ethyl esters and alcohols, tri- and diacylglycerols, and glycerol. The inclusion of new experimental data for fatty esters, a partial acylglycerol, and glycerol allowed for a further refinement in the performance of this methodology in comparison to a prior group contribution equation (Ceriani, R.; Goncalves, C. B.; Rabelo, J.; Caruso, M.; Cunha, A. C. C.; Cavaleri, F. W.; Batista, E. A. C.; Meirelles, A. J. A. Group contribution model for predicting viscosity of fatty compounds. J. Chem. Eng. Data 2007, 52, 965-972) for all classes of fatty compounds. Besides, the influence of small concentrations of partial acylglycerols, intermediate compounds in the transesterification reaction, in the viscosity of biodiesels was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this work was to evaluate thermodynamic parameters of the soybean oil extraction process using ethanol as solvent. The experimental treatments were as follows: aqueous solvents with water contents varying from 0 to 13% (mass basis) and extraction temperature varying from 50 to 100 degrees C. The distribution coefficients of oil at equilibrium have been used to calculate enthalpy, entropy and free energy changes. The results indicate that oil extraction process with ethanol is feasible and spontaneous, mainly under higher temperature. Also, the influence of water level in the solvent and temperature were analysed using the response surface methodology (RSM). It can be noted that the extraction yield was highly affected by both independent variables. A joint analysis of thermodynamic and RSM indicates the optimal level of solvent hydration and temperature to perform the extraction process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free fatty acids are known for playing a crucial role in the development of insulin resistance. High fat intake is known for impairing insulin sensitivity; however, the effect of vegetable-oil injections have never been investigated. The present study investigated the effects of daily subcutaneous injections (100 mu L) of soybean (SB) and sunflower (SF) oils, during 7 days. Both treated groups developed insulin resistance as assessed by insulin tolerance test. The mechanism underlying the SB- and SF-induced insulin resistance was shown to involve GLUT4. In SB- and SF-treated animals, the GLUT4 protein expression was reduced similar to 20% and 10 min after an acute it? vivo stimulus with insulin, the plasma membrane GLUT4 content was similar to 60% lower in white adipose tissue (WAT). No effects were observed in skeletal muscle. Additionally, both oil treatments increased mainly the content of palmitic acid (similar to 150%) in WAT, which can contribute to explain the GLUT4 regulations. Altogether, the present study collects evidence that those oil treatments might generate insulin resistance by targeting GLUT4 expression and translocation specifically in WAT. These alterations are likely to be caused due to the specific local increase in saturated fatty acids that occurred as a consequence of oil daily injections. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SBTX, a novel toxin from soybean, was purified by ammonium sulfate fractionation followed by chromatographic steps DEAE-Cellulose, CM-Sepharose and Superdex 200 HR fast-protein liquid chromatography (FPLC). Lethality of SBTX to mice (LD50 5.6 mg/kg) was used as parameter in the purification steps. SBTX is a 44-kDa basic glycoprotein composed of two polypeptide chains (27 and 17 kDa) linked by a disulfide bond. The N-terminal sequences of the 44 and 27 kDa chains were identical (ADPTFGFTPLGLSEKANLQIMKAYD), differing from that of 17 kDa (PNPKVFFDMTIGGQSAGRIVMEEYA). SBTX contains high levels of Glx, Ala, Asx, Gly and Lys and showed maximum absorption at 280 nm, epsilon(1 cm) (1%) of 6.3, and fluorescence emission in the 290-450nm range upon excitation at 280nm. The secondary structure content was 35% alpha-helix, 13% beta-strand and beta-sheet, 27% beta-turn, 25% unordered, and 1% aromatic residues. Immunological assays showed that SBTX was related to other toxic proteins, such as soyatoxin and canatoxin, and cross-reacted weekly with soybean trypsin inhibitor and agglutinin, but it was devoid of protease-inhibitory and hemagglutinating activities. The inhibitory effect of SBTX on growth of Cercospora sojina, fungus causing frogeye leaf spot in soybeans, was observed at 50 mu g/ml, concentration 112 times lesser than that found to be lethal to mice. This effect on phytopathogenic fungus is a potential attribute for the development of transgenic plants with enhanced resistance to pathogens. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling of spatial dependence structure, concerning geoestatistics approach, is an indispensable tool for fixing parameters that define this structure, applied on interpolation of values in places that are not sampled, by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations on sampled data. Thus, this trial aimed at using diagnostics techniques of local influence in spatial linear Gaussians models, applied at geoestatistics in order to evaluate sensitivity of maximum likelihood estimators and restrict maximum likelihood to small perturbations in these data. So, studies with simulated and experimental data were performed. Those results, obtained from the study of real data, allowed us to conclude that the presence of atypical values among the sampled data can have a strong influence on thematic maps, changing, therefore, the spatial dependence. The application of diagnostics techniques of local influence should be part of any geoestatistic analysis, ensuring that the information from thematic maps has better quality and can be used with greater security by farmers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased (center dot)NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of (center dot)NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel distribution uses 304 stainless steel containers for the storage of biofuels, however there are few reports in the literature about the corrosive aspects this. steel in biodiesel. The objective of this research is to study the corrosive behavior of 304 austenitic stainless steel in the presence of biodiesel, unwashed and washed, with aqueous solutions of citric, oxalic, acetic and ascorbic acids 0,01 mol L(-1), and compare with results obtained for the copper (ASTM D130). The employedtechniques were: atomic absorption spectrometry (AAS) and optical microscopy (OM). The results of EA A showed a low rate of corrosion for the stainless steel, the alloys elements studied were Cr, Ni and Fe, the highest rate was observed for the chrome, 1.78 ppm / day in biodiesel with or without washing. The OM of the 304 steel, when compared with that of copper has a low corrosion rate in the 304 steel/biodiesel system. Not with standing, this demonstrates that not only the 304 steel, but also the copper corrodes in biodiesel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B3LYP/6-31 + G(d) calculations were employed to investigate the mechanism of the transesterification reaction between a model monoglyceride and the methoxide and ethoxide anions. The gas-phase results reveal that both reactions have essentially the same activation energy (5.9 kcal mol(-1)) for decomposition of the key tetrahedral intermediate. Solvent effects were included by means of both microsolvation and the polarizable continuum solvation model CPCM. Both solvent approaches reduce the activation energy, however, only the microsolvation model is able to introduce some differentiation between methanol and ethanol, yielding a lower activation energy for decomposition of the tetrahedral intermediate in the reaction with methanol (1.1 kcal mol(-1)) than for the corresponding reaction with ethanol (2.8 kcal mol(-1)), in line with experimental evidences. Analysis of the individual energy components within the CPCM approach reveals that electrostatic interactions are the main contribution to stabilization of the transition state. (C) 2009 Elsevier Ltd. All rights reserved.