6 resultados para Soutien des pairs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study evaluated the relationship among malocclusion, number of occlusal pairs, masticatory performance, masticatory time and masticatory ability in completely dentate subjects. Eighty healthy subjects (mean age = 19.40 ± 4.14 years) were grouped according to malocclusion diagnosis (n = 16): Class I, Class Class II-2, Class III and Normocclusion (control). Number of occlusal pairs was determined clinically. Masticatory performance was evaluated by the sieving method, and the time used for the comminute test food was registered as the masticatory time. Masticatory ability was measured by a dichotomic self-perception questionnaire. Statistical analysis was done by one-way ANOVA, ANOVA on ranks, Chi-Square and Spearman tests. Class II-1 and III malocclusion groups presented a smaller number of occlusal pairs than Normocclusion (p < 0.0001), Class I (p < 0.001) and II-2 (p < 0.0001) malocclusion groups. Class I, and III malocclusion groups showed lower masticatory performance values compared to Normocclusion (p < 0.05) and Class II-2 (p < 0.05) malocclusion groups. There were no differences in masticatory time (p = 0.156) and ability (χ2 = 3.58/p= 0.465) among groups. Occlusal pairs were associated with malocclusion (rho = 0.444/p < 0.0001) and masticatory performance (rho = 0.393/p < 0.0001), but malocclusion was not correlated with masticatory performance (rho = 0.116/p= 0.306). In conclusion, masticatory performance and ability were not related to malocclusion, and subjects with Class I, II-1 and III malocclusions presented lower masticatory performance because of their smaller number of occlusal pairs.
Resumo:
PHENIX has measured the e(+)e(-) pair continuum in root s(NN) = 200 GeV Au+Au and p+p collisions over a wide range of mass and transverse momenta. The e(+)e(-) yield is compared to the expectations from hadronic sources, based on PHENIX measurements. In the intermediate-mass region, between the masses of the phi and the J/psi meson, the yield is consistent with expectations from correlated c (c) over bar production, although other mechanisms are not ruled out. In the low-mass region, below the phi, the p+p inclusive mass spectrum is well described by known contributions from light meson decays. In contrast, the Au+Au minimum bias inclusive mass spectrum in this region shows an enhancement by a factor of 4.7 +/- 0.4(stat) +/- 1.5(syst) +/- 0.9(model). At low mass (m(ee) < 0.3 GeV/c(2)) and high p(T) (1 < p(T) < 5 GeV/c) an enhanced e(+)e(-) pair yield is observed that is consistent with production of virtual direct photons. This excess is used to infer the yield of real direct photons. In central Au+Au collisions, the excess of the direct photon yield over the p+p is exponential in p(T), with inverse slope T = 221 +/- 19(stat) +/- 19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T(init) similar or equal to 300-600 MeV at times of 0.6-0.15 fm/c after the collision are in qualitative agreement with the direct photon data in Au+Au. For low p(T) < 1 GeV/c the low-mass region shows a further significant enhancement that increases with centrality and has an inverse slope of T similar or equal to 100 MeV. Theoretical models underpredict the low-mass, low-p(T) enhancement.
Resumo:
Pair correlations between large transverse momentum neutral pion triggers (p(T) = 4-7 GeV/c) and charged hadron partners (p(T) = 3-7 GeV/c) in central (0%-20%) and midcentral (20%-60%) Au + Au collisions at root s(NN) = 200 GeV are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot densematter. An out-of-plane trigger particle produces only 26 +/- 20% of the away-side pairs that are observed opposite of an in-plane trigger particle for midcentral (20%-60%) collisions. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism and the space-time evolution of heavy-ion collisions.
Resumo:
In this work, we study the role of the ac Stark effects on the excitation of nS(1/2) cold Rydberg atoms produced in a rubidium magneto-optical trap. We have observed an atomic population in the nP(3/2) state after excitation of nS(1/2) for 29 <= n <= 37. Such an observation is normally attributed to binary collisions; however, the interaction between Rb nS(1/2) atoms is repulsive. To explain our results, the dipole-dipole interaction and ac Stark shifts from the excitation laser must be considered. We find that the Rydberg-atom-pair state asymptotically correlating to nP(3/2)+(n-1)P(3/2) is excited directly.
Resumo:
Background: Retinitis pigmentosa (RP) is a group of genetically heterogeneous diseases with progressive degeneration of the retina. The condition can be inherited as an autosomal dominant, autosomal recessive, and X-linked trait. Methods: We report on two female twin pairs. One twin of each pair is affected with RP, the other twin is unaffected, both clinically and functionally. Molecular analysis in both twins included zygosity determination, arrayed primer extension chip analysis for autosomal recessive and dominant RP, sequencing of the entire RPGR gene, and analysis of X-chromosome inactivation status. Results: Both unrelated twin pairs were genetically identical. Of the potential pathogenetic mechanisms, skewed X-inactivation was excluded on leukocytes. Autosomal recessive RP and autosomal dominant RP arrayed primer extension chip analysis result was completely normal, excluding known mutations in known genes as the cause of disease in the affected twins. Sequencing excluded mutations in RPGR. A postzygotic recessive or dominant genetic mutation of an RP gene is not impossible. A postfertilization error as a potential cause of uniparental isodisomy is unlikely albeit not entirely impossible. Conclusion: The authors report on the second and third unrelated identical twin pair discordant for RP. The exact cause of the condition and the explanation of the clinical discordance remain elusive. RETINA 31:1164-1169, 2011
Resumo:
In the kallikrein-kinin and renin-angiotensin systems the main receptors, B-1 and B-2 (kinin receptors) and AT(1) and AT(2) (angiotensin receptors) respectively, are seven-transmembrane domain G-protein-coupled receptors. Considering that the B, agonists Des-Arg(9)-BK (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe), Lys-desArg(9)-BK or Des-Arg(10)-KD (Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe) and the AT, agonist (Asp-Arg-Val-Tyr-lle-His-Pro-Phe) have the same two residues at the C-terminal region (i.e. Pro-Phe), we hypothesized that TM V and TM VI of the B-1 receptor could play an essential role in agonist binding and activity, being these regions receptor sites for binding the C-terminal sequences of Des-Arg-kinins similarly to that observed to AT, receptor. To investigate this hypothesis, we replaced Arg(212) for Ala at the top of the TM V and the sequence 274-282 (CPYHFFAFL) in TM VI of the rat kinin B, receptor by the 32 receptor homologous sequence, 289-297 (FPFQISTFL) and subsequently analyzed the consequences of these mutations by competition binding and functional assays. Despite correct expression, observed at the mRNA and protein level by RT-PCR and confocal microscopy, respectively, no agonist binding and function was verified for the mutated receptors. Therefore, our results suggest an important role for Arg(212) in the TM V and a region of TM VI of rat B, receptor in the interaction with the C-terminal residues of Des-Arg-kinins, similar to that observed with AngII. (c) 2007 Elsevier B.V. All rights reserved.