2 resultados para South Carolina--Appropriations and expenditures
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Prince Maximilian zu Wied's great exploration of coastal Brazil in 1815-1817 resulted in important collections of reptiles, amphibians, birds, and mammals, many of which were new species later described by Wied himself The bulk of his collection was purchased for the American Museum of Natural History in 1869, although many ""type specimens"" had disappeared earlier. Wied carefully identified his localities but did not designate type specimens or type localities, which are taxonomic concepts that were not yet established. Information and manuscript names on a fraction (17 species) of his Brazilian reptiles and amphibians were transmitted by Wied to Prof. Heinrich Rudolf Schinz at the University of Zurich. Schinz included these species (credited to their discoverer ""Princ. Max."") in the second volume of Das Thierreich ... (1822). Most are junior objective synonyms of names published by Wied. However, six of the 17 names used by Schinz predate Wied's own publications. Three were manuscript names never published by Wied because he determined the species to be previously known. (1) Lacerta vittata Schinz, 1822 (a nomen oblitum) = Lacerta striata sensu Wied (a misidentification, non Linnaeus nec sensu Merrem) = Kentropyx calcarata Spix, 1825, herein qualified as a nomen protectum. (2) Polychrus virescens Schinz, 1822 = Lacerta marmorata Linnaeus, 1758 (now Polychrus marmoratus). (3) Scincus cyanurus Schinz, 1822 (a nomen oblitum) = Gymnophthalmus quadrilineatus sensu Wied (a misidentification, non Linnaeus nec sensu Merrem) = Micrablepharus maximiliani (Reinhardt and Lutken, ""1861"" [1862]), herein qualified as a nomen protectum. Qualifying Scincus cyanurus Schinz, 1822, as a nomen oblitum also removes the problem of homonymy with the later-named Pacific skink Scincus cyanurus Lesson (= Emoia cyanura). The remaining three names used by Schinz are senior objective synonyms that take priority over Wied's names. (4) Bufo cinctus Schinz, 1822, is senior to Bufo cinctus Wied, 1823; both, however, are junior synonyms of Bufo crucifer Wied, 1821 = Chaunus crucifer (Wied). (5) Agama picta Schinz, 1822, is senior to Agama picta Wied, 1823, requiring a change of authorship for this poorly known species, to be known as Enyalius pictus (Schinz). (6) Lacerta cyanomelas Schinz, 1822, predates Teius cyanomelas Wied, 1824 (1822-1831) both nomina oblita. Wied's illustration and description shows cyanomelas as apparently conspecific with the recently described but already well-known Cnemidophorus nativo Rocha et al., 1997, which is the valid name because of its qualification herein as a nomen protectum. The preceding specific name cyanomelas (as corrected in an errata section) is misspelled several ways in different copies of Schinz's original description (""cyanom las,"" ""cyanomlas,"" and cyanom""). Loosening, separation, and final loss of the last three letters of movable type in the printing chase probably accounts for the variant misspellings.
Resumo:
Footemineite, ideally Ca2Mn2+square Mn22+Be4(PO4)(6)(OH)(4)-6H(2)O, triclinic, is a new member of the roscherite group. It occurs on thin fractures crossing quartz-microcline-spodumene pegmatite at the Foote mine, Kings Mountain, Cleveland County, North Carolina, U.S.A. Associated minerals are albite, analcime, eosphorite, siderite/rhodochrosite, fairfieldite, fluorapatite, quartz, milarite, and pyrite. Footemineite forms prismatic to bladed generally rough to barrel-shaped crystals up to about 1.5 mm long and I mm in diameter. Its color is yellow, the streak is white, and the luster is vitreous to slightly pearly. Footemineite is transparent and non-fluorescent. Twinning is simple, by reflection, with twin boundaries across the length of the crystals. Cleavage is good on {0 (1) over bar1}) and {100}. Density (calc.) is 2.873 g/cm(3). Footemineite is biaxial (-), n(alpha) = 1.620(2), n(beta) = 1.627(2), n(gamma) = 1.634(2) (white light). 2V(obs) = 80 degrees, 2V(calc) = 89.6 degrees. Orientation: X boolean AND b similar to 12 degrees, Y boolean AND c similar to 15 degrees, Z boolean AND a similar to 15 degrees. Elongation direction is c, dispersion: r > v or r < v, weak. Pleochroism: beta (brownish yellow) > alpha = gamma (yellow). Mossbauer and IR spectra are given. The chemical composition is (EDS mode electron microprobe, Li and Be by ICP-OES, Fe3+:Fe2+ y Mossbauer, H2O by TG data, wt%): Li2O 0.23, BeO 9.54, CaO 9.43, SrO 0.23, BaO 0.24, MgO 0.18, MnO 26.16, FeO 2.77, Fe2O3 0.62, Al2O3 0.14, P2O5 36.58, SiO2 0.42, H2O 13.1, total 99.64. The empirical formula is (Ca1.89Sr0.03Ba0.02)Sigma(1.94)(Mn-0.90(2+)square(0.10))Sigma(1.00)(square 0.78Li0.17Mg0.05) Sigma(1.00)(Mn3.252+Fe0.432+ Fe0.093+Al0.03)Sigma(3.80) Be-4.30(P5.81Si0.08O24)[(OH)3.64(H2O)0.36]Sigma(4.00)center dot 6.00H(2)O . The strongest reflection peaks of the powder diffraction pattern [d, angstrom (1, %) (hkl)] are 9.575 (53) (010), 5.998 (100) (0 (1) over bar1), 4.848 (26) (021), 3.192 (44) (210), 3.003 (14) (0 (2) over bar2), 2.803 (38) ((1) over bar 03), 2.650 (29) ((2) over bar 02), 2.424 (14) (231). Single-crystal unit-cell parameters are a = 6.788(2), b = 9.972(3), c = 10.014(2) A, (x = 73.84(2), beta = 85.34(2), gamma = 87.44(2)degrees,V = 648.74 angstrom(3), Z = 1. The space group is P (1) over bar. Crystal structure was refined to R = 0.0347 with 1273 independent reflections (F > 2(5). Footemineite is dimorphous with roscherite, and isostructural with atencioite. It is identical with the mineral from Foote mine described as ""triclinic roscherite."" The name is for the Foote mine, type locality for this and several other minerals.