30 resultados para Sound speed
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.
Resumo:
A new class of accelerating cosmological models driven by a one-parameter version of the general Chaplygin-type equation of state is proposed. The simplified version is naturally obtained from causality considerations with basis on the adiabatic sound speed vs plus the observed accelerating stage of the universe. We show that very stringent constraints on the unique free parameter a describing the simplified Chaplygin model can be obtained from a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations (BAO). In our analysis we have considered separately the SNe type la gold sample measured by [A.G. Riess et al.. Astrophys. J. 607 (2004) 665] and the supernova legacy survey (SNLS) from [P. Astier et al., Astron. Astrophys. 447 (2006) 31]. At 95.4% (c.l.), we find for BAO + gold sample, 0.91 <= alpha <= 1.0 and Omega(m) = 0.28(-0.048)(+0.043) while BAO + SNLS analysis provides 0.94 <= alpha <= 1.0 and Omega(m) = 0.27(-0.045)(+0.048). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Models of dynamical dark energy unavoidably possess fluctuations in the energy density and pressure of that new component. In this paper we estimate the impact of dark energy fluctuations on the number of galaxy clusters in the Universe using a generalization of the spherical collapse model and the Press-Schechter formalism. The observations we consider are several hypothetical Sunyaev-Zel`dovich and weak lensing (shear maps) cluster surveys, with limiting masses similar to ongoing (SPT, DES) as well as future (LSST, Euclid) surveys. Our statistical analysis is performed in a 7-dimensional cosmological parameter space using the Fisher matrix method. We find that, in some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when priors from other standard cosmological probes are included. We also show how dark energy fluctuations can be a nuisance for constraining cosmological parameters with cluster counts, and point to a degeneracy between the parameter that describes dark energy pressure on small scales (the effective sound speed) and the parameters describing its equation of state.
Resumo:
Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound data which accurately and efficiently models the strong refraction effects that occur in our target application: Imaging the female breast. Methods: Our refractive ray tracing framework has its foundation in the fast marching method (FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a novel regularization scheme that yields further significant reconstruction quality improvements. A final contribution is the development of a realistic anthropomorphic digital breast phantom based on the NIH Visible Female data set. Results: Our system is able to resolve very fine details even in the presence of significant noise, and it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional, but significantly more computationally expensive wave equation solver is achieved. Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our regularization scheme and the high-quality interpolation filter we have used. An added benefit of our framework is that it accelerates well on GPUs where we have shown that clinical 3D reconstruction speeds on the order of minutes are possible.
Resumo:
This paper presents a novel adaptive control scheme. with improved convergence rate, for the equalization of harmonic disturbances such as engine noise. First, modifications for improving convergence speed of the standard filtered-X LMS control are described. Equalization capabilities are then implemented, allowing the independent tuning of harmonics. Eventually, by providing the desired order vs. engine speed profiles, the pursued sound quality attributes can be achieved. The proposed control scheme is first demonstrated with a simple secondary path model and, then, experimentally validated with the aid of a vehicle mockup which is excited with engine noise. The engine excitation is provided by a real-time sound quality equivalent engine simulator. Stationary and transient engine excitations are used to assess the control performance. The results reveal that the proposed controller is capable of large order-level reductions (up to 30 dB) for stationary excitation, which allows a comfortable margin for equalization. The same holds for slow run-ups ( > 15s) thanks to the improved convergence rate. This margin, however, gets narrower with shorter run-ups (<= 10s). (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.
Resumo:
This study evaluated in vitro the shear bond strength of a resin-based pit-and-fissure sealant (Fluroshield - F) associated with either an ethanol-based (Adper Single Bond 2 - SB) or an acetone-based (Prime & Bond - PB) adhesive system under conditions of oil contamination. Mesial and distal enamel surfaces from 30 sound third molars were randomly assigned to 2 groups (n=30): I - no oil contamination; II - oil contamination. Contamination (0.25 mL during 10 s) was performed after 37% phosphoric acid etching with an air/oil spray. The specimens were randomly assigned to subgroups, according to the bonding protocol adopted: subgroup A - F was applied to enamel without an intermediate bonding agent layer; In subgroups B and C, SB and PB, respectively, were applied, light-cured, and then F was applied and light-cured. Shear bond strength was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. Means (± SD) in MPa were: IA-11.28 (±1.84); IIA-12.02 (±1.15); IB-9.73 (±2.38); IIB-9.62 (±2.29); IC-28.30 (±1.63); and IIC-25.50 (±1.91). It may be concluded that the oil contamination affected negatively the sealant bonding to enamel and the acetone-based adhesive system (PB) layer applied underneath the sealant was able to prevent its deleterious effects to adhesion.
Resumo:
We explored possible effects of negative covariation among finger forces in multifinger accurate force production tasks on the classical Fitts's speed-accuracy trade-off. Healthy subjects performed cyclic force changes between pairs of targets ""as quickly and accurately as possible."" Tasks with two force amplitudes and six ratics of force amplitude to target size were performed by each of the four fingers of the right hand and four finger combinations. There was a close to linear relation between movement time and the log-transformed ratio of target amplitude to target size across all finger combinations. There was a close to linear relation between standard deviation of force amplitude and movement time. There were no differences between the performance of either of the two ""radial"" fingers (index and middle) and the multifinger tasks. The ""ulnar"" fingers (little and ring) showed higher indices of variability and longer movement times as compared with both ""radial"" fingers and multifinger combinations. We conclude that potential effects of the negative covariation and also of the task-sharing across a set of fingers are counterbalanced by an increase in individual finger force variability in multifinger tasks as compared with single-finger tasks. The results speak in favor of a feed-forward model of multifinger synergies. They corroborate a hypothesis that multifinger synergies are created not to improve overall accuracy, but to allow the system larger flexibility, for example to deal with unexpected perturbations and concomitant tasks.
Resumo:
Tool wear is a very important subject affecting the economics of machining, especially in tapping, since it is one of the last operations to be performed within most operation sequences. In the present study, some aspects of tapping such as the mechanisms and types of wear were investigated in taps working at conventional and high-speed cutting (HSC). Additionally, different types of coatings and cooling /lubrication conditions were used. The tapping operation (M8 x 1.25) was performed in through holes with two cutting speeds (30 and 60 m/min) in grey cast iron GG25. Lubrication conditions tested were dry and with minimal quantity of lubricant. Tap materials were manufactured by powder metallurgy and coated with (TiAl)N and with TiCN. A go-non-go gauge criterion was used to assess tool life. The wear and surface aspects of the tools and workpiece were evaluated by scanning electron microscopy and energy dissipation spectroscopy. Torque signals were also measured during the tests. The main wear mechanism observed was adhesion, although some abrasion and diffusion may also have occurred, and the main type of wear was flank wear. The adhesion of workpiece material on the tool was the main and decisive factor ending tool life. Tool coatings proved to be an efficient way to minimize adhesion. Torque signals followed the same pattern as the flank wear and no significant change was observed when the cutting speed was increased.
Resumo:
This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wave fronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
Objective. - The objective of this work was to verify if there was a difference in throwing speed performance between heavier and lighter weight categories in judo. Methods and subjects. - Sixteen (16) judoists 18 +/- 3 years old, eight considered in the lightweight category (< 66 kg) and eight considered in the heavyweight (> 73 kg) category, participated in the study after signing a term of informed consent. A force-velocity test was used to determine the anaerobic power, strength, and pedal speed for each subject. In addition, three trials of Nage-komi exercise, each comprised of a set of Osoto-gari (15s), Uchi-mata (15s) and Seoi-nage (15s) throws were performed by each subject to ascertain throwing speed. Throws within the sets were intersected by one period of three minutes passive rest, while the trials were separated by one period of 10 minutes passive rest. Heart rate and the greatest number of throws within each set were measured for three trials. One-way analysis of variance (Anova) was used to compare the number of throws between the two weight categories and a ""Student"" test when the difference was significant. A correlation was used to examine the link between the different parameters. Results. - The force-velocity test did not show a significant difference in pedal speed between the two categories. However, there was a significant difference between the two categories when throwing speed was measured by the number of throws (p < 0.05) executed during the Seoi-nage (p < 0.01) and Uchi-mata (p <0.05) techniques. There was however, no significant difference between the two categories in Osoto-gari technique. Conclusion. - The throwing speed of judoists represented by the number of throws is significantly different between the two categories. The lighter category has more speed than the heavier category using the arm technique (Seoi-nage), while the heavier category has more speed using the leg technique with half turn of the attacker`s body (Uchi-mata). As a result, throwing speed is related to the type of technique used and not weight category. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
We examined effects of attentional focus on swimming speed. Participants` task was to swim one length of a pool (16 m) using the front crawl stroke. In Experiment 1, intermediate swimmers were given attentional focus instructions related to the crawl arm stroke or the leg kick, respectively. Participants were instructed to focus on ""pulling your hands back"" or ""pushing the instep down"" (internal focus), or on ""pushing the water back/down"" (external focus), respectively. Swim times were significantly shorter with an external focus. In Experiment 2, a control condition was included. Times were significantly faster in the external focus compared with both the internal focus and control conditions. These findings have implications for enhancing performance in swimming.
Resumo:
Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.