2 resultados para Soil water. eng
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.
Resumo:
Sisal fibers have been chemically modified by reaction with lignins, extracted from sugarcane bagasse and Pinus-type wood and then hydroxymethylated, to increase adhesion in resol-type phenolic thermoset matrices. Inverse gas chromatography (IGC) results showed that acidic sites predominate for unmodified/modified sisal fibers and for phenolic thermoset, indicating that the phenolic matrix has properties that favor the interaction with sisal fibers. The IGC results also showed that the phenolic thermoset has a dispersive component closer to those of the modified fibers suggesting that thermoset interactions with the less polar modified fibers are favored. Surface SEM images of the modified fibers showed that the fiber bundle deaggregation increased after the treatment, making the interfibrillar structure less dense in comparison with that of unmodified fibers, which increased the contact area and encouraged microbial biodegradation in simulated soil. Water diffusion was observed to be faster for composites reinforced with modified fibers, since the phenolic resin penetrated better into modified fibers, thereby blocking water passage through their channels. Overall, composites` properties showed that modified fibers promote a significant reduction in the hydrophilic character, and consequently of the reinforced composite without a major effect on impact strength and with increased storage modulus. (c) 2008 Elsevier Ltd. All rights reserved.