3 resultados para Social interactions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We analyze the stability properties of equilibrium solutions and periodicity of orbits in a two-dimensional dynamical system whose orbits mimic the evolution of the price of an asset and the excess demand for that asset. The construction of the system is grounded upon a heterogeneous interacting agent model for a single risky asset market. An advantage of this construction procedure is that the resulting dynamical system becomes a macroscopic market model which mirrors the market quantities and qualities that would typically be taken into account solely at the microscopic level of modeling. The system`s parameters correspond to: (a) the proportion of speculators in a market; (b) the traders` speculative trend; (c) the degree of heterogeneity of idiosyncratic evaluations of the market agents with respect to the asset`s fundamental value; and (d) the strength of the feedback of the population excess demand on the asset price update increment. This correspondence allows us to employ our results in order to infer plausible causes for the emergence of price and demand fluctuations in a real asset market. The employment of dynamical systems for studying evolution of stochastic models of socio-economic phenomena is quite usual in the area of heterogeneous interacting agent models. However, in the vast majority of the cases present in the literature, these dynamical systems are one-dimensional. Our work is among the few in the area that construct and study analytically a two-dimensional dynamical system and apply it for explanation of socio-economic phenomena.
Resumo:
We introduce a stochastic heterogeneous interacting-agent model for the short-time non-equilibrium evolution of excess demand and price in a stylized asset market. We consider a combination of social interaction within peer groups and individually heterogeneous fundamentalist trading decisions which take into account the market price and the perceived fundamental value of the asset. The resulting excess demand is coupled to the market price. Rigorous analysis reveals that this feedback may lead to price oscillations, a single bounce, or monotonic price behaviour. The model is a rare example of an analytically tractable interacting-agent model which allows LIS to deduce in detail the origin of these different collective patterns. For a natural choice of initial distribution, the results are independent of the graph structure that models the peer network of agents whose decisions influence each other. (C) 2009 Elsevier B.V. All rights reserved.