2 resultados para Slow-Moving Vehicle Identification Emblems.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-toed sloths (Bradypus) are slow-moving arboreal neotropical mammals. Understanding demographic variables (such as sex ratio) of populations is a key for conservation purposes. Nevertheless, gender assignment of Bradypus is particularly challenging because of the lack of sexual dimorphism in infants and in adults, particularly B. torquatus, the most endangered of the three-toed sloths, in which sex is attributed by visual observation of the reproductively active males. Here, we standardized a method for sexing Bradypus individuals using PCR-RFLP of sex-linked genes ZFX/ZFY. This assay was validated with known-gender animals and proved accurate to assign gender on three Bradypus species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.