6 resultados para Sigmoid Formatting Rules

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, thermodynamic models for fitting the phase equilibrium of binary systems were applied, aiming to predict the high pressure phase equilibrium of multicomponent systems of interest in the food engineering field, comparing the results generated by the models with new experimental data and with those from the literature. Two mixing rules were used with the Peng-Robinson equation of state, one with the mixing rule of van der Waals and the other with the composition-dependent mixing rule of Mathias et al. The systems chosen are of fundamental importance in food industries, such as the binary systems CO(2)-limonene, CO(2)-citral and CO(2)-linalool, and the ternary systems CO(2)-Limonene-Citral and CO(2)-Limonene-Linalool, where high pressure phase equilibrium knowledge is important to extract and fractionate citrus fruit essential oils. For the CO(2)-limonene system, some experimental data were also measured in this work. The results showed the high capability of the model using the composition-dependent mixing rule to model the phase equilibrium behavior of these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the form factors and the coupling constant in the D*D rho vertex in the framework of QCD sum rules. We evaluate the three-point correlation functions of the vertex considering D, rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g(D*D rho) = 4.3 +/- 0.9 GeV(-1). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use QCD sum rules to calculate the branching ratio for the production of the meson X(3872) in the decay B -> X(3872)K, assumed to be a mixture between charmonium and exotic molecular vertical bar c (q) over bar vertical bar vertical bar q (c) over bar vertical bar states with J(PC) = 1(++). We find that in a small range for the values of the mixing angle, 5 degrees <= theta <= 13 degrees, we get the branching ratio B(B -> XK) = (1.00 +/- 0.68) x 10(-5), which is in agreement with the experimental upper limit. This result is compatible with the analysis of the mass and decay width of the mode J/psi(n pi) and the radiative decay mode J/psi gamma performed in the same approach. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark (c (c) over barq (q) over bar) or (c (c) over bars (s) over bar) states with J(PC)= 1(--). We work at leading order in alpha(s), consider the contributions of higher dimension condensates and keep terms which are linear in the strange quark mass m(s). We find for the (c (c) over bars (s) over bar) state a mass in m(Y) = (4.65 +/- 0.10) GeV which is compatible with the experimental candidate Y (4660), while for the (c (c) over barq (q) over bar) state we find a mass in m(Y) = (4.49 +/- 0.11) GeV, which is still consistent with the mass of the experimental candidate Y(4350). With the tetraquark structure we are working we cannot explain the Y(4260) as a tetraquark state. We also consider molecular D(s0)(D) over bar (s)* and D(0)(D) over bar* states. For the D(s0)(D) over bar (s)* molecular state we get m(Ds0 (D) over bars*) = (4.42 +/- 0.10) GeV which is consistent, considering the errors, with the mass of the meson Y(4350) and for the D(0)(D) over bar* molecular state we get m(D0 (D) over bar*) = (4.27 +/- 0.10) GeV in excellent agreement with the mass of the meson Y(4260). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use QCD sum rules to study the recently observed meson Z(+)(4430), considered as a D*D-1 molecule with J(P) = 0(-). We consider the contributions of condensates up to dimension eight and work at leading order in alpha(s). We get m(Z) = (4.40 +/- 0.10) GeV in a very good agreement with the experimental value. We also make predictions for the analogous mesons Z(s) and Z(bb) considered as D-s*D-1 and B*B-1 molecules, respectively. For Z(s) we predict mZ(s) = (4.70 +/- 0.06) GeV, which is above the D-s* D-1 threshold, indicating that it is probably a very broad state and, therefore, difficult to observe experimentally. For Z(bb) we predict m(Zbb) = (10.74 +/- 0.12) GeV, in agreement with quark model predictions. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the form factors and the coupling constant in the rho D*D* vertex in the framework of QCD sum rules. We evaluate the three point correlation functions of the vertex considering both rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g rho D*D* = 6.60 +/- 0.31. This number is 50% larger than what we would expect from SU(4) estimates. (c) 2007 Elsevier B.V. All rights reserved.