12 resultados para Separation Distress
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Acute respiratory distress syndrome (ARDS) is a frequent respiratory disturbance in preterm newborns. Preceding investigations evaluated chronic physiotherapy effects on newborns with different lung diseases; however, no study analyzed acute physiotherapy treatment on premature newborns with ARDS. In this study we aimed to evaluate the acute effects of chest and motor physiotherapy treatment on hemodynamic variables in preterm newborns with ARDS. Methods: We evaluated heart rate (HR), respiratory rate (RR), systolic (SAP), mean (MAP) and diastolic arterial pressure (DAP), temperature and oxygen saturation (SO(2)%) in 44 newborns with ARDS. We compared all variables between six periods in one day: before first physiotherapy treatment vs. after first physiotherapy treatment vs. before second physiotherapy treatment vs. after second physiotherapy treatment vs. before third physiotherapy treatment vs. after third physiotherapy treatment. Variables were measured 2 minutes before and 5 minutes after each physiotherapy session. We applied Anova one way followed by post hoc Bonferroni test. Results: HR (147.5 +/- 9.5 bpm vs. 137.7 +/- 9.3 bpm; p<0.001), RR (45.5 +/- 8.7cpm vs. 41.5 +/- 6.7 cpm; p=0.001), SAP (70.3 +/- 10.4 mmHg vs. 60.1 +/- 7.1 mmHg; p=0.001) and MAP (55.7 +/- 10 mmHg vs. 46 +/- 6.6 mmHg; p=0.001) were significantly reduced after the third physiotherapy treatment compared to before the first session. There were no significant changes regarding temperature, DAP and SO(2) %. Conclusion: Chest and motor physiotherapy acutely improves HR, RR, SAP, MAP and SO(2) % in newborns with ARDS.
Resumo:
The gills contain essential cells for respiration and osmoregulation, whereas the hepatopancreas is the site of digestion, absorption, and nutrients storage. The aim of this work was to separate and characterize gill and hepatopancreatic cells of the mangrove crab, Ucides cordatus. For gills, the methodology consisted of an enzymatic cellular dissociation using Trypsin at 0.5%, observation of cellular viability with Tripan Blue, and separation of cells using discontinuous sucrose gradient at concentrations of 10%, 20%, 30%, and 40%. The hepatopancreatic cells were dissociated by magnetic stirring, with posterior separation by sucrose gradient at the same concentrations above. For gills, a high cellular viability was observed (92.5 +/- 2.1%), with hemocyte cells in 10% sucrose layer (57.99 +/- 0.17%, *P < 0.05), principal cells in the 20% sucrose layer (57.33 +/- 0.18, *P < 0.05), and thick cells and pillar cells in the 30% and 40% sucrose layers, respectively (39.54 +/- 0.05%, *P < 0.05; and 41.81 +/- 0.04%, *P < 0.05). The hepatopancreatic cells also showed good viability (79.22 +/- 0.02%), with the observation of embryonic (E) cells in the 10% sucrose layer (67.87 +/- 0.06%, **P < 0.001), resorptive (R) and fibrillar (F) cells in the 20% and 30% sucrose layers (44.71 +/- 0.06%, **P < 0.001, and 43.25 +/- 0.01%, *P < 0.05; respectively), and blister (B) cells in the 40% sucrose layer (63.09 +/- 0.03%, **P < 0.001). The results are a starting point for in vitro studies of heavy metal transport in isolated cells of the mangrove crab U. cordatus, subjected to contamination by metals in the mangrove habitat where they are found.
Resumo:
In this study, we addressed the phylogenetic and taxonomic relationships of Trypanosoma vivax and related trypanosomes nested in the subgenus Duttonella through combined morphological and phylogeographical analyses. We previously demonstrated that the clade T. vivax harbours a homogeneous clade comprising West African/South American isolates and the heterogeneous East African isolates. Herein we characterized a trypanosome isolated from a nyala antelope (Tragelaphus angasi) wild-caught in Mozambique (East Africa) and diagnosed as T. vivax-like based on biological, morphological and molecular data. Phylogenetic relationships, phylogeographical patterns and estimates of genetic divergence were based on SSU and ITS rDNA sequences of T. vivax from Brazil and Venezuela (South America), Nigeria (West Africa), and from T. vivax-like trypanosomes from Mozambique, Kenya and Tanzania (East Africa). Despite being well-supported within the T. vivax clade, the nyala trypanosome was highly divergent from all other T. vivax and T. vivax-like trypanosomes, even those from East Africa. Considering its host origin, morphological features, behaviour in experimentally infected goats, phylogenetic placement, and genetic divergence this isolate represents a new genotype of trypanosome closely phylogenetically related to T. vivax. This study corroborated the high complexity and the existence of distinct genotypes yet undescribed within the subgenus Duttonella.
Resumo:
The purpose of this study is to evaluate the influence of the undermining of the subcutaneous tissue on the tension of the abdominal wall, after the components separation of the abdominal muscles. Twenty adult cadavers were studied. The resistance of the medial advancement of both anterior and posterior recti sheaths was represented by the traction index and measured in 2 levels-3 cm above and 2 cm below the umbilicus. Traction indices were compared in the following 3 consecutive dissection situations: (1) after the subcutaneous tissue undermining laterally to the semilunaris line; (2) after the dissection of the rectus muscle from its posterior sheath associated with the release of the external oblique muscle; (3) after the subcutaneous tissue undermining laterally to the anterior axillary line. Friedman and Spearman tests were used to compare the results. There was no statistical significant difference between the subcutaneous tissue undermining laterally to the semilunaris line and that laterally to the anterior axillary line, when associated with the musculoaponeurotic dissections. In conclusion, limited subcutaneous undermining does not influence the tension of closure of the musculoaponeurotic layer after the components separation technique in cadavers.
Surfactant-nanotube interactions in water and nanotube separation by diameter: atomistic simulations
Resumo:
A non-destructive sorting method to separate single-walled carbon nanotubes (SWNTs) by diameter was recently proposed. By this method, SWNTs are suspended in water by surfactant encapsulation and the separation is carried out by ultracentrifugation in a density gradient. SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic surfactants, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. Unexpectedly, small diameter nanotubes are found at the low density part of the centrifuge tube. We present molecular dynamics studies of the water-surfactant-SWNT system to investigate the role of surfactants in the sorting process. We found that surfactants can actually be attracted towards the interior of the nanotube cage, depending on the relationship between the surfactant radius of gyration and the nanotube diameter. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Resumo:
Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SIDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 angstrom, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 angstrom. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Resumo:
Polycrystalline La(0.86)Sr(0.14)Mn(1-x)Cu(x)O(3+delta) (x = 0, 0.05, 0.10, 0.15, 0.20) manganites were investigated by means of magnetic measurements and zero-field (139)La and (55)Mn nuclear magnetic resonance (NMR) spectroscopy. Magnetization versus temperature measurements revealed a paramagnetic to ferromagnetic transition in most samples, with lower Curie temperatures and broader transitions for samples with higher Cu contents. The details of the magnetization measurements suggested a phase-separated scenario, with ferromagnetic clusters embedded in an antiferromagnetic matrix, especially for the samples with large Cu contents (x = 0.15 and 0.20). Zero-field (139)La NMR measurements confirmed this finding, since the spectral features remained almost unchanged for all Cu-doped samples, whereas the bulk magnetization was drastically reduced with increasing Cu content. (55)Mn NMR spectra were again typical of ferromagnetic regions, with a broadening of the resonance line caused by the disorder introduced by the Cu doping. The results indicate a coexistence of different magnetic phases in the manganites studied, with the addition of Cu contributing to the weakening of the double-exchange interaction in most parts of the material.
Resumo:
Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH2O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH2O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH2O collection. The Oxyphan (R) fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH2O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO3-, by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-(CD)-D-4) enabled the development of a complete analytical protocol for the CH2O evaluation in air. (C) 2008 Published by Elsevier B.V.
Resumo:
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
Resumo:
This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.
Resumo:
A simple, fast, and sensitive liquid-liquid extraction method followed by nonaqueous capillary electrophoresis (LLE/NACE) was developed and validated for Simultaneous determination of four antidepressants (fluoxetine, sertraline, citalopram and paroxetine) in human plasma. Several experimental separation conditions using aqueous and nonaqueous media separation were tested by varying the electrolyte pH value (for aqueous medium) and the ionic strength concentration considering the similar mobility of the compounds. High-resolution separation was achieved with a mixture of 1.25 mol L(-1) of phosphoric acid in acetonitrile. The quantification limits of the LLE/CE method varied between 15 and 30 ng mL(-1), with a relative standard deviation (RSD) lower than 10.3%. The method was successfully applied in therapeutic drug monitoring and should be employed in the evaluation of plasma levels in urgent toxicological analysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present work had as objective the isolation of the five compounds by thin-layer Chromatography (TLC) from the essential oil of the Aloysia gratissima. For this, a number of systems of eluents were used for its separation, indicating that through the system acetone/hexane in proportions (v/v) 1:30 it was possible to isolate guaiol, elemol, pinocanphone (trans-3-pinanone), cis-pinocarvyl, and acorenone. The isolation of the compound acorenone from the other compounds was possible with the mixture of solvents hexane/dichloromethane in proportions (v/v) (1:1,3).