3 resultados para Sensorial
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
This study determined the sensory shelf life of a commercial brand of chocolate and carrot cupcakes, aiming at increasing the current 120 days of shelf life to 180. Appearance, texture, flavor and overall quality of cakes stored at six different storage times were evaluated by 102 consumers. The data were analyzed by analysis of variance and linear regression. For both flavors, the texture presented a greater loss in acceptance during the storage period, showing an acceptance mean close to indifference on the hedonic scale at 120 days. Nevertheless, appearance, flavor and overall quality stayed acceptable up to 150 days. The end of shelf life was estimated at about 161 days for chocolate cakes and 150 days for carrot cakes. This study showed that the current 120 days of shelf life can be extended to 150 days for carrot cake and to 160 days for chocolate cake. However, the 180 days of shelf life desired by the company were not achieved. PRACTICAL APPLICATIONS This research shows the adequacy of using sensory acceptance tests to determine the shelf life of two food products (chocolate and carrot cupcakes). This practical application is useful because the precise determination of the shelf life of a food product is of vital importance for its commercial success. The maximum storage time should always be evaluated in the development or reformulation of new products, changes in packing or storage conditions. Once the physical-chemical and microbiological stability of a product is guaranteed, sensorial changes that could affect consumer acceptance will determine the end of the shelf life of a food product. Thus, the use of sensitive and reliable methods to estimate the sensory shelf life of a product is very important. Findings show the importance of determining the shelf life of each product separately and to avoid using the shelf time estimated for a specific product on other, similar products.
Resumo:
The aim of this work was to encapsulate casein hydrolysate by complex coacervation with soybean protein isolate (SPI)/pectin. Three treatments were studied with wall material to core ratio of 1:1, 1:2 and 1:3. The samples were evaluated for morphological characteristics, moisture, hygroscopicity, solubility, hydrophobicity, surface tension, encapsulation efficiency and bitter taste with a trained sensory panel using a paired comparison test. The samples were very stable in cold water. The hydrophobicity decreased inversely with the hydrolysate content in the microcapsule. Encapsulated samples had lower hygroscopicity values than free hydrolysate. The encapsulation efficiency varied from 91.62% to 78.8%. Encapsulated samples had similar surface tension, higher values than free hydrolysate. The results of the sensory panel test considering the encapsulated samples less bitter (P < 0.05) than the free hydroly-state, showed that complex coacervation with SPI/pectin as wall material was an efficient method for microencapsulation and attenuation of the bitter taste of the hydrolysate. (C) 2009 Elsevier Ltd. All rights reserved.