22 resultados para Segmented polyurethanes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Freestanding castor oil-based polyurethane (PU) film was obtained using spin-coating method. The effect of polyol content was analysed by means of thermally stimulated depolarisation current and AC dielectric measurements techniques. Two relaxation peaks were observed in the temperature range of -40 to 60 degrees C for PU with different polyol contents. The presence of polyol excess provides a shift to lower temperature of the a relaxation and the decrease in the activation energy of the transition in this region might be attributed to the plasticising effect of the polyol. The peak at higher temperature is due to the Maxwell-Wagner-Sillars relaxation, which also shifts in the low temperature direction as the polyol content is increased.
Resumo:
Unmanned air vehicles (UAVs) and micro air vehicles (MAVs) constitute unique application platforms for vibration-based energy harvesting. Generating usable electrical energy during their mission has the important practical value of providing an additional energy source to run small electronic components. Electrical energy can be harvested from aeroelastic vibrations of lifting surfaces of UAVs and MAVs as they tend to have relatively flexible wings compared to their larger counterparts. In this work, an electromechanically coupled finite element model is combined with an unsteady aerodynamic model to develop a piezoaeroelastic model for airflow excitation of cantilevered plates representing wing-like structures. The electrical power output and the displacement of the wing tip are investigated for several airflow speeds and two different electrode configurations (continuous and segmented). Cancelation of electrical output occurs for typical coupled bending-torsion aeroelastic modes of a cantilevered generator wing when continuous electrodes are used. Torsional motions of the coupled modes become relatively significant when segmented electrodes are used, improving the broadband performance and altering the flutter speed. Although the focus is placed on the electrical power that can be harvested for a given airflow speed, shunt damping effect of piezoelectric power generation is also investigated for both electrode configurations.
Resumo:
Establishment of a treatment plan is based on efficacy and easy application by the clinician, and acceptance by the patient. Treatment of adult patients with Class III malocclusion might require orthognathic surgery, especially when the deformity is severe, with a significant impact on facial esthetics. Impacted teeth can remarkably influence treatment planning, which should be precise and concise to allow a reasonably short treatment time with low biologic cost. We report here the case of a 20-year-old man who had a skeletal Class III malocclusion and impaction of the maxillary right canine, leading to remarkable deviation of the maxillary midline; this was his chief complaint. Because of the severely deviated position of the impacted canine, treatment included extraction of the maxillary right canine and left first premolar for midline correction followed by leveling, alignment, correction of compensatory tooth positioning, and orthognathic surgery to correct the skeletal Class III malocclusion because of the severe maxillary deficiency. This treatment approach allowed correction of the maxillary dental midline discrepancy to the midsagittal plane and establishment of good occlusion and optimal esthetics. (Am J Orthod Dentofacial Orthop 2010;137:840-9)
Resumo:
Techniques devoted to generating triangular meshes from intensity images either take as input a segmented image or generate a mesh without distinguishing individual structures contained in the image. These facts may cause difficulties in using such techniques in some applications, such as numerical simulations. In this work we reformulate a previously developed technique for mesh generation from intensity images called Imesh. This reformulation makes Imesh more versatile due to an unified framework that allows an easy change of refinement metric, rendering it effective for constructing meshes for applications with varied requirements, such as numerical simulation and image modeling. Furthermore, a deeper study about the point insertion problem and the development of geometrical criterion for segmentation is also reported in this paper. Meshes with theoretical guarantee of quality can also be obtained for each individual image structure as a post-processing step, a characteristic not usually found in other methods. The tests demonstrate the flexibility and the effectiveness of the approach.
Resumo:
This paper presents a new framework for generating triangular meshes from textured color images. The proposed framework combines a texture classification technique, called W-operator, with Imesh, a method originally conceived to generate simplicial meshes from gray scale images. An extension of W-operators to handle textured color images is proposed, which employs a combination of RGB and HSV channels and Sequential Floating Forward Search guided by mean conditional entropy criterion to extract features from the training data. The W-operator is built into the local error estimation used by Imesh to choose the mesh vertices. Furthermore, the W-operator also enables to assign a label to the triangles during the mesh construction, thus allowing to obtain a segmented mesh at the end of the process. The presented results show that the combination of W-operators with Imesh gives rise to a texture classification-based triangle mesh generation framework that outperforms pixel based methods. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
Resumo:
This study describes the preparation and characterization of new starch cross-linked polyurethanes produced by the reaction of native cornstarch with a propylene oxide toluene diisocyanate oligomer. Infrared analysis confirmed the occurrence of the reaction and solubility and swelling tests showed that it had led to cross-linked structures. These products were totally amorphous and displayed elastomeric properties associated with two T(g)s at -60 and 35 degrees C. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.
Resumo:
A new genus and species of parasitic copepod (Clausiidae), Spionicola mystaceus, associated with the polychaete Dipolydora armata (Spionidae) is described and figured. The new copepod has an elongate body, 5-segmented antennule, 2-segmented rami on legs 1 and 2, 2 spines representing leg 3, no leg 4, leg 5 well developed and reduced armature elements on feeding limbs. The host is a mollusk-shell borer, collected off São Sebastião Island, State of São Paulo, Brazil.
Resumo:
This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette-Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.
Resumo:
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 mu m CMOS technology, requiring an active area of just 200 mu m x 200 mu m. Experimental results, with a full-scale output current of 700 mu A and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.
Resumo:
This work presents a critical analysis of methodologies to evaluate the effective (or generalized) electromechanical coupling coefficient (EMCC) for structures with piezoelectric elements. First, a review of several existing methodologies to evaluate material and effective EMCC is presented. To illustrate the methodologies, a comparison is made between numerical, analytical and experimental results for two simple structures: a cantilever beam with bonded extension piezoelectric patches and a simply-supported sandwich beam with an embedded shear piezoceramic. An analysis of the electric charge cancelation effect on the effective EMCC observed in long piezoelectric patches is performed. It confirms the importance of reinforcing the electrodes equipotentiality condition in the finite element model. Its results indicate also that smaller (segmented) and independent piezoelectric patches could be more interesting for energy conversion efficiency. Then, parametric analyses and optimization are performed for a cantilever sandwich beam with several embedded shear piezoceramic patches. Results indicate that to fully benefit from the higher material coupling of shear piezoceramic patches, attention must be paid to the configuration design so that the shear strains in the patches are maximized. In particular, effective square EMCC values higher than 1% were obtained embedding nine well-spaced short piezoceramic patches in an aluminum/foam/aluminum sandwich beam.
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objectives: The aim of this study was to determine the insulin-delivery system and the attributes of insulin therapy that best meet patients` preferences, and to estimate patients` willingness-to-pay (WTP) for them. Methods: This was a cross-sectional discrete choice experiment (DCE) study involving 378 Canadian patients with type 1 or type 2 diabetes. Patients were asked to choose between two hypothetical insulin treatment options made up of different combinations of the attribute levels. Regression coefficients derived using conditional logit models were used to calculate patients` WTP. Stratification of the sample was performed to evaluate WTP by predefined subgroups. Results: A total of 274 patients successfully completed the survey. Overall, patients were willing to pay the most for better blood glucose control followed by weight gain. Surprisingly, route of insulin administration was the least important attribute overall. Segmented models indicated that insulin naive diabetics were willing to pay significantly more for both oral and inhaled short-acting insulin compared with insulin users. Surprisingly, type 1 diabetics were willing to pay $C11.53 for subcutaneous short-acting insulin, while type 2 diabetics were willing to pay $C47.23 to avoid subcutaneous short-acting insulin (p < .05). These findings support the hypothesis of a psychological barrier to initiating insulin therapy, but once that this barrier has been overcome, they accommodate and accept injectable therapy as a treatment option. Conclusions: By understanding and addressing patients` preferences for insulin therapy, diabetes educators can use this information to find an optimal treatment approach for each individual patient, which may ultimately lead to improved control, through improved compliance, and better diabetes outcomes.
Resumo:
Objective: The purpose of this study was to investigate regional structural abnormalities in the brains of five patients with refractory obsessive-compulsive disorder (OCD) submitted to gamma ventral capsulotomy. Methods: We acquired morphometric magnetic resonance imaging (MRI) data before and after 1 year of radiosurgery using a 1.5-T MRI scanner. Images were spatially normalized and segmented using optimized voxel-based morphometry (VBM) methods. Voxelwise statistical comparisons between pre- and post-surgery MRI scans were performed using a general linear model. Findings in regions predicted a priori to show volumetric changes (orbitofrontal cortex, anterior cingulate gyrus, basal ganglia and thalamus) were reported as significant if surpassing a statistical threshold of p<0.001 (uncorrected for multiple comparisons). Results: We detected a significant regional postoperative increase in gray matter volume in the right inferior frontal gyri (Brodmann area 47, BA47) when comparing all patients pre and postoperatively. Conclusions: Our results support the current theory of frontal-striatal-thalamic-cortical (FSTC) circuitry involvement in OCD pathogenesis. Gamma ventral capsulotomy is associated with neurobiological changes in the inferior orbitofrontal cortex in refractory OCD patients. (C) 2008 Elsevier Ireland Ltd. All rights reserved.