8 resultados para Second Electron Donor

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Four new ternary complexes of copper(I) with thiosaccharin and phosphanes were prepared. The reaction of [Cu(4)(tsac)(4)(CH(3)CN)(2)] (1) (tsac: thiosaccharinate anion) with PPh(3) in molar ratios Cu(I)/PPh(3) 1:075 and 1:2 gave the complexes [Cu(4)(tsac)(4)(PPh(3))(3)] center dot CH(3)CN (2) and Cu(tsac)(PPh(3))(2) (3), respectively. The reaction of 1 with Ph(2)PCH(2)PPh(2) (dppm) in molar ratios Cu(I)/dppm 2:1 and 1:1 gave the complexes [Cu(4) (tsac)(4)(dppm)(2)] center dot 2CH(2)Cl(2) (4) and [Cu(2)(tsac)(2)(dppm)(2)] center dot CH(2)Cl(2) (5), respectively. All the compounds have been characterized by spectroscopic and X-ray crystallographic methods. Complex 2 presents a tetra-nuclear arrangement with three metal centers in distorted tetrahedral S(2)NP environments, the fourth one with the Cu(I) ion in a distorted trigonal S(2)N coordination sphere, and the tsac anions acting as six electron donor ligands in mu(3)-S(2)N coordination forms. Complex 3 shows mononuclear molecular units with copper(I) in a distorted trigonal planar coordination sphere, built with the exocyclic S atom of a mono-coordinated thiosaccharinate anion and two P-atoms of triphenylphosphane molecules. With dppm as secondary ligand the structures of the complexes depends strongly on the stoicheometry of the preparation reaction. Complex 4 has a centrosymmetric structure. Two triply bridged Cu(2)(tsac)(2)(dppm) units are joined together by the exocyclic S-atoms of two tsac anions acting effectively as bridging tridentate ligands. Complex 5 is conformed by asymmetric dinuclear moieties where the two dppm and one tsac ligands bridge two Cu(I) atoms and the second tsac anion binds one of the metal centers through its exocyclic S-atom. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports theoretical and experimental studies on the first hyperpolarizability (beta) of aminophenols, evaluating the influence of the NH(2) group position relative to the OH group on the hyperpolarizability. A new extension of hyper-Rayleigh scattering technique using picosecond pulse trains was employed to obtain the experimental absolute values of (beta). The theoretical static beta(0) values were calculated using AMI method implemented in the AMPAC program. The theoretical and experimental data show a clear dependence between beta and the relative position of the electron donor (D) and acceptor (A) groups, presenting the 2-aminophenol the higher values. Moreover, calculations show excellent qualitative agreement between theoretical and experimental data, which are improved when the simulations considering the solvated molecule in a combination of discrete solvent molecules interacting with the solute and the application of continuous dielectric model. Besides, the study indicates that the experimental hyperpolarizabilities seem to be a property of the solute-solvation shell system. These facts have affirmed that the theoretical approach employed can be successfully used to foresee the variation in beta due to modifications in the D/A position. Moreover, a theoretical study of the ground state absorption is performed and compared with experimental data. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two-photon absorption spectra of a triarylamine compounds dissolved in toluene were measured using the well-known Z-scan technique, employing 120-fs laser pulse-width. According to the results, an extra band located at around 900 nm was observed only for triarylamine with azoaromatic units. On the other hand, a shift in the two-photon absorption band for triarylamine, with and without azoaromatic units, is observed when different electron donor/acceptors groups are changed. The fitting of the spectra, using sum-over-states model, allowed us to obtain the spectroscopic parameters of each molecule, which appears to be in reasonable agreement with molecules presenting similar structural moieties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assuming the existence of a confined state of the electron in bulk water the polarizability of the hydrated electron is analyzed. Statistically uncorrelated supermolecular structures composed of seven water molecules (first solvation shell) with an extra electron were extracted from classical Monte Carlo simulation and used in quantum mechanical second-order Moller-Plesset calculations. It is found that the bound excess electron contributes with 274 a.u. to the total dipole polarizability of 345 a.u. for (H(2)O)(7)(-). From the calculated polarizabilities the Rayleigh elastic light scattering properties are inferred and found to considerably enhance activity and light depolarization. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we report on the experimental electron sheet density vs. magnetic field diagram for the magnetoresistance R(xx) of a two-dimensional electron system (2DES) with two occupied subbands. For magnetic fields above 9T, we found fractional quantum Hall levels centered around the filing factor v = 3/2 in both the two occupied electric subbands. We focused specially on the fractional levels of the second subband, whose experimental values of the magnetic field B of their minima do not obey a periodicity law in 1/|B-B(c)|, where B(c) is the critical field at the filling factor v = 3/2, and we explain this fact entirely in the framework of the composite fermions theory. We use a simple theoretical model to give a possible explanation for the fact. Copyright (c) EPLA, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The iso-alpha-acids or isohumulones are the major contributors to the bitter taste of beer, and it is well-recognized that they are degraded during beer aging. In particular, the trans-isohumulones seem to be less stable than the cis-isohumulones. The major radical identified in beer is the 1-hydroxyethyl radical; however, the reactivity between this radical and the isohumulones has not been reported until now. Therefore, we studied the reactivity of isohumulones toward the 1-hydroxyethyl radical through a competitive kinetic approach. It was observed that both cis- and trans-isohumulones and dihydroisohumulones are decomposed in the presence of 1-hydroxyethyl radicals, while the reactivities are comparable. On the other hand, the tetrahydroisohumulones did not react with 1-hydroxyethyl radicals. The apparent second-order rate constants for the reactions between the 1-hydroxyethyl radical and these compounds were determined by electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization-tandem mass spectrometry [ESI(+)-MS/MS]. It follows that degradation of beer bitter acids is highly influenced by the presence of 1-hydroxyethyl radicals. The reaction products were detected by liquid chromatography electrospray ionization-ion trap-tandem mass spectrometry (LC-ESI-IT-MS/MS), and the formation of oxidized derivatives of the isohumulones was confirmed. These data help to understand the mechanism of beer degradation upon aging.