4 resultados para Scintillation counters.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.
Resumo:
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of (222)Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern Sao Paulo State, Brazil. The observed mean (222)Rn activity concentrations are 374 Bq/dm(3) in one well and about 1275 Bq/dm(3) in the other one. In both wells the (222)Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
S100 beta is a soluble protein released by glial cells mainly under the activation of the 5-HT1A receptor. It has been reported as a neuro-trophic and -tropic factor that promotes neurite maturation and outgrowth during development. This protein also plays a role in axonal stability and the plasticity underlying long-term potentiation in adult brains. The ability of S100 beta to rapidly regulate neuronal morphology raises the interesting point of whether there are daily rhythm or gender differences in S100 beta level in the brain. To answer this question, the S100 beta expression in adult female and male rats, as well as in adult female CD-21 and S100 beta -/- female mice, were investigated. Scintillation counting and morphometric analysis of the immunoreactivity of S100 beta, showed rhythmic daily expression. The female and male rats showed opposite cycles. Females presented the highest value at the beginning of the rest phase (5:00 h), while in males the maximum value appeared in the beginning of the motor activity period (21:00 h). These results confirm previous S100 beta evaluations in human serum and cerebrospinal fluid reporting the protein`s function as a biomarker for brain damage (Gazzolo et al. in Clin Chem 49:967-970, 2003; Clin Chim Acta 330:131-133, 2003; Pediatr Res 58:1170-1174, 2005), similar behavior was also observed for GFAP in relation to Alzheimer Disease (Fukuyama et al. in Eur Neurol 46:35-38, 2001). The data should be taken into account when considering S100 beta as a biomarker of health condition. In addition, the results raise questions on which structure or condition imposes these rhythms as well as on the physiological meaning of the observed gender differences.
Resumo:
Electron transport parameters are important in several areas ranging from particle detectors to plasma-assisted processing reactors. Nevertheless, especially at high fields strengths and for complex gases, relatively few data are published. A dedicated setup has been developed to measure the electron drift velocity and the first Townsend coefficient in parallel plate geometry. An RPC-like cell has been adopted to reach high field strengths without the risk of destructive sparks. The validation data obtained with pure Nitrogen will be presented and compared to a selection of the available literature and to calculations performed with Magboltz 2 version 8.6. The new data collected in pure Isobutane will then be discussed. This is the first time the electron drift velocity in pure Isobutane is measured well into the saturation region. Good agreement is found with expectations from Magboltz. (C) 2009 Elsevier B.V. All rights reserved.