9 resultados para Scattering Calculations

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the effects of several approximations commonly used in coupled-channel analyses of fusion and elastic scattering cross sections. Our calculations are performed considering couplings to inelastic states in the context of the frozen approximation, which is equivalent to the coupled-channel formalism when dealing with small excitation energies. Our findings indicate that, in some cases, the effect of the approximations on the theoretical cross sections can be larger than the precision of the experimental data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Asystematic study on the surface-enhanced Raman scattering (SERS) for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine (bptz) adsorbed onto citrate-modified gold nanoparticles (cit-AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit-AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge-transfer (CT) effects. The most strongly enhanced vibrations belong to a(1) and b(2) representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on measurements of total cross sections (TCSs) for positron scattering from the fundamental organic molecule formaldehyde (CH(2)O). The energy range of these measurements was 0.26-50.3 eV, whereas the energy resolution was similar to 260 meV. To assist us in interpreting these data, Schwinger multichannel level calculations for positron elastic scattering from CH(2)O were also undertaken (0.5-50 eV). These calculations, incorporating an accurate model for the target polarization, are found to be in good qualitative agreement with our measured data. In addition, in order to compare the behaviour of positron and electron scattering from this species, independent atom model-screened additivity rule theoretical electron TCSs, now for energies in the range 1-10 000 eV, are also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assuming the existence of a confined state of the electron in bulk water the polarizability of the hydrated electron is analyzed. Statistically uncorrelated supermolecular structures composed of seven water molecules (first solvation shell) with an extra electron were extracted from classical Monte Carlo simulation and used in quantum mechanical second-order Moller-Plesset calculations. It is found that the bound excess electron contributes with 274 a.u. to the total dipole polarizability of 345 a.u. for (H(2)O)(7)(-). From the calculated polarizabilities the Rayleigh elastic light scattering properties are inferred and found to considerably enhance activity and light depolarization. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The experimental feasibility was investigated for the resonant scattering of monoenergetic neutrinos emitted in the two-body beta decay. A simple general formula shows that the resonance cross section can be as large as of the order of 10(-17) cm(2). The Mossbauer setup using a solid crystal was examined with a focus on the electronic structure of the emitter and the absorber. Based on realistic calculations, we show that interactions of valence electrons in the solid lead to a level broadening of the atomic ground state, which considerably suppresses the resonant scattering of neutrinos. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new formulation of potential scattering in quantum mechanics is developed using a close structural analogy between partial waves and the classical dynamics of many non-interacting fields. Using a canonical formalism we find nonlinear first-order differential equations for the low-energy scattering parameters such as scattering length and effective range. They significantly simplify typical calculations, as we illustrate for atom-atom and neutron-nucleus scattering systems. A generalization to charged particle scattering is also possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, angular distribution measurements for the elastic channel were performed for the (9)Be + (12)C reaction at the energies E(Lab) = 13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the double folding Sao Paulo potential. The experimental elastic scattering angular distributions were well described by the optical potential at forward angles for all measured energies. However, for the three highest energies, an enhancement was observed for intermediate and backward angles. This can be explained by the elastic transfer mechanism. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of pyridine (py) on Fe, Co, Ni and Ag electrodes was studied using surface-enhanced Raman scattering (SERS) to gain insight into the nature of the adsorbed species. The wavenumber values and relative intensities of the SERS bands were compared to the normal Raman spectrum of the chemically prepared transition metal complexes. Raman spectra of model clusters M(4)(py) (four metal atoms bonded to one py moiety) and M(4)(alpha-pyridil) where M = Ag, Fe, Co or Ni were calculated by density functional theory (DFT) and used to interpret the experimental SERS results. The similarity of the calculated M(4)(py) spectra with the experimental SERS spectra confirm the molecular adsorption of py on the surface of the metallic electrodes. All these results exclude the formation of adsorbed alpha-pyridil species, as suggested previously. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the selectivity of Well-defined Au and Ag nanostructures as substrates for the SERS, (surface-enhanced Raman scattering) detection of simazine (6-chloro-N,N`-diethyl-1,3,5-triazine-2,4-diamine) and atrazine (6-chloro-N-ethyl-N`-isopropyl-1,3,5-triazine-2,4-diamine). Our data showed that simazine and atrazine displayed similar SERS spectra when the Au was employed as substrate. Conversely, distinct SERS signatures were obtained upon the utilization of Ag substrates. Density functional theory (DFT) calculations and vibrational assignments suggested that, while simazine and atrazine adsorbed on Au via the N3 position of the triazine ring, simazine adsorbed on Ag via N3 and atrazine via N5. The results presented herein demonstrated that the adsorption geometry of analyte molecules can play a central role over substrate selectivity in SERS, which is particularly important in applications involving ultrasensitive analysis of mixtures containing structurally similar molecules.