5 resultados para Satellite DNA
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Studies about composition of repetitive sequences and their chromosomal location have been helpful to evolutionary studies in many distinct organisms. In order to keep on assessing the possible relationships among different cytotypes of Astyanax fasciatus (Teleostei, Characiformes) in the Mogi-Guacu River (Sao Paulo State, Brazil), C-banding, chromomycin A 3 staining, and fluorescent in situ hybridization with a repetitive DNA sequence (As51) isolated from Astyanax scabripinnis were performed in the present work. The constitutive heterochromatin was distributed in terminal regions on long arms of submetacentric, subtelocentric, and acrocentric chromosomes and in the terminal region on short arms of a pair of submetacentric chromosomes in both standard cytotypes. This latter heterochromatic site was also GC-rich, as revealed by chromomycin A(3) staining, corresponding to the nucleolar organizer region (NOR), as shown by previous studies. The sites of the satellite As51 DNA were located in terminal regions on long arms of several chromosomes. Some variant karyotypic forms, which diverge from the two standard cytotypes, also presented distinctive chromosomes carrying As51 satellite DNA. It is possible that the standard 2n = 46 cytotype represents an invader population in the Mogi-Guacu River able to interbreed with the resident standard 2n = 48 cytotype. Therefore, the variant karyotypes would be related to a possible viable offspring, where complementary chromosomal rearrangements could favor new locations of the satellite DNA analyzed. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Trypanosoma cruzi is highly diverse genetically and has been partitioned into six discrete typing units (DTUs), recently re-named T. cruzi I-VI. Although T. cruzi reproduces predominantly by binary division, accumulating evidence indicates that particular DTUs are the result of hybridization events. Two major scenarios for the origin of the hybrid lineages have been proposed. It is accepted widely that the most heterozygous TcV and TcVI DTUs are the result of genetic exchange between TcII and TcIII strains. On the other hand, the participation of a TcI parental in the current genome structure of these hybrid strains is a matter of debate. Here, sequences of the T. cruzi-specific 195-bp satellite DNA of TcI, TcII, Tat, TcV, and TcVI strains have been used for inferring network genealogies. The resulting genealogy showed a high degree of reticulation, which is consistent with more than one event of hybridization between the Tc DTUs. The data also strongly suggest that Tat is a hybrid with two distinct sets of satellite sequences, and that genetic exchange between TcI and TcII parentals occurred within the pedigree of the TcV and TcVI DTUs. Although satellite DNAs belong to the fast-evolving portion of eukaryotic genomes, in >100 satellite units of nine T. cruzi strains we found regions that display 100% identity. No DTU-specific consensus motifs were identified, inferring species-wide conservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The 195-bp satellite DNA is the most abundant Trypanosoma cruzi repetitive sequence. Here we show by RNA blotting and RT-PCR that 195 SAT is intensely transcribed. We observed a positive correlation between the level of satellite RNA and the abundance of the satellite copies in the genome of T cruzi strains and that the satellite expression is not developmentally regulated. By analyzing CL Brener individual reads, we estimated that 195 SAT corresponds to approximately 5% of the CL Brener genome. 195 SAT elements were found in only 37 annotated contigs, indicating that a large number of satellite copies were not incorporated into the assembled data. The assembled satellite units are distributed in non-syntenic regions with Trypanosoma brucei and Leishmania major genomes, enriched with surface proteins, retroelements, RHS and hypothetical proteins. Satellite repeats were not observed in annotated subtelomeric regions. We report that 12 satellite sequences are truncated by the retroelement VIPER. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Despite the widespread distribution of Astyanax bockmanni in streams from Upper Parana River system in central, southeastern, and southern Brazil, just recently, it has been identified as a distinct Astyanax species. Cytogenetic studies were performed in two populations of this species, revealing conservative features. A. bockmanni shows 2n = 50 chromosomes, a karyotypic formula composed of 10 M + 12SM + 12ST + 16A and multiple Ag-NORs. Eight positive signals in subtelocentric/acrocentric chromosomes were identified by fluorescent in situ hybridization (FISH) with 18S rDNA probes. After FISH with 5S rDNA probes, four sites were detected, comprising the interstitial region of a metacentric pair and the terminal region on long arms of another metracentric pair. Little amounts of constitutive heterochromatin were observed, mainly distributed at distal region in two chromosomal pairs. Additionally, heterochromatin was also located close to the centromeres in some chromosomes. No positive signals were detected in the chromosomes of A. bockmanni by FISH with the As-51 satellite DNA probe. The studied species combines a set of characteristics previously identified in two different Astyanax groups. The chromosomal evolution in the genus Astyanax is discussed.
Resumo:
Ribosomal RNA genes of most insects are interrupted by R1/R2 retrotransposons. The occurrence of R2 retrotransposons in sciarid genomes was studied by PCR and Southern blot hybridization in three Rhynchosciara species and in Trichosia pubescens. Amplification products with the expected size for non-truncated R2 elements were only obtained in Rhynchosciara americana. The rDNA in this species is located in the proximal end of the X mitotic chromosome but in the salivary gland is associated with all four polytene chromosomes. Approximately 50% of the salivary gland rDNA of most R. americana larval groups analysed had an insertion in the R2 site, while no evidence for the presence of R1 elements was found. In-situ hybridization results showed that rDNA repeat units containing R2 take part in the structure of the extrachromosomal rDNA. Also, rDNA resistance to Bal 31 digestion could be interpreted as evidence for nonlinear rDNA as part of the rDNA in the salivary gland. Insertions in the rDNA of three other sciarid species were not detected by Southern blot and in-situ hybridization, suggesting that rDNA retrotransposons are significantly under-represented in their genomes in comparison with R. americana. R2 elements apparently restricted to R. americana correlate with an increased amount of repetitive DNA in its genome in contrast to other Rhynchosciara species. The results obtained in this work together with previous results suggest that evolutionary changes in the genus Rhynchosciara occurred by differential genomic occupation not only of satellite DNA but possibly also of rDNA retrotransposons.