132 resultados para SYNTHASE INHIBITORS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic L-DOPA pharmacotherapy in Parkinson`s disease is often, accompanied by the development of abnormal and excessive movements known as L-DOPA-induced dyskinesia. Rats with 6-hydroxydopamine lesion of dopaminergic neurons chronically treated with L-DOPA develop a rodent analog of this dyskinesia characterized by severe axial, limb, locomotor and orofacial abnormal involuntary movements. While the mechanisms by which these effects occur are not clear, they may involve the nitric oxide system. In the present study we investigate if nitric oxide synthase inhibitors can prevent dyskinesias induced by repeated administration Of L-DOPA in rats with unilateral 6-hydroxydopamine lesion. Chronic L-DOPA (high fixed dose, 100 mg/kg; low escalating dose, 10-30 mg/kg) treatment induced progressive dyskinesia changes. Two nitric oxide synthase inhibitors, 7-nitroindazole (1-30 mg/kg) and NG-nitro-L-arginine (50 mg/kg), given 30 min before L-DOPA, attenuate dyskinesia. 7-Nitroindazolee also improved motor performance of these animals in the rota-rod test. These results suggest the possibility that nitric oxide synthase inhibitors may be useful to treat L-DOPA.-Induced dyskinesia. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low-intensity electrical stimulation (LIES) may counteract the effects of ovariectomy (OVX) on nitric oxide synthase (NOS) expression, osteocyte viability, bone structure, and microarchitecture in rats (Lirani-Galvo et al., Calcif Tissue Int 84:502-509, 2009). The aim of the present study was to investigate if these effects of LIES could be mediated by NO. We analyzed the effects of NO blockage (by l-NAME) in the response to LIES on osteocyte viability, bone structure, and microarchitecture in OVX rats. Sixty rats (200-220 g) were divided into six groups: sham, sham-l-NAME (6 mg/kg/day), OVX, OVX-l-NAME, OVX-LIES, and OVX-LIES-l-NAME. After 12 weeks, rats were killed and tibiae collected for histomorphometric analysis and immunohistochemical detection of endothelial NOS (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). In the presence of l-NAME, LIES did not counteract the OVX-induced effects on bone volume and trabecular number (as on OVX-LIES). l-NAME blocked the stimulatory effects of LIES on iNOS and eNOS expression of OVX rats. Both l-NAME and LIES decreased osteocyte apoptosis. Our results showed that in OVX rats l-NAME partially blocks the effects of LIES on bone structure, turnover, and expression of iNOS and eNOS, suggesting that NO may be a mediator of some positive effects of LIES on bone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To evaluate biomarkers of endothelial dysfunction and oxidative stress in glucose intolerance (GI) compared to overt diabetes (DM2). Design and methods: 140 volunteers including 96 with DM2, 32 with GI and 12 controls (C) were Studied. NO metabolites, NO synthase inhibitors. thiols and N-acetyl-beta-glucosaminidase (NAGase) activity were analyzed by chemiluminescence, capillary electrophoresis, ELISA and colorimetric assay, respectively. Results: (center dot)NO metabolites were higher in GI (NOx: P=0.03 S-nitrosothiols: p=0.001) and DM2 (p=0.006; p=0.0006) groups in relation to group C, while nitrotyrosine was higher only in the DM2 group in comparison 10 the other groups. NAGase activity was elevated in GI (p=0.003) and DM2 (p=0.0004) groups in relation to group C, as well as, ADMA (p=0.01: p=0.003) and GSSG (p=0.01 p=0.002). Conclusions: (center dot)NO metabolites. (center dot)NO synthase inhibitors. thiols and NAGase are biomarkers Suitable to indicate endothelial dysfunction and oxidative stress in the early stages of impaired response to insulin. (c) 2008 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Homocysteine is an independent risk factor for coronary heart disease, as well as for cerebrovascular and peripheral vascular diseases. The purpose of this study was to investigate the effects of hyperhomocysteinemia (HHcy) on vascular reactivity within carotid artery segments isolated from ovariectomized female rats. Treatment with dl-Hcy thiolactone (1 g/kg body weight per day) reduced the phenylephrine-induced contraction of denuded rings. However, the treatment did not alter KCl-induced contractions, or relaxations induced by sodium nitroprusside or acetylcholine. We report elevated expressions of iNOS, eNOS, and nitrotyrosine in homocysteine-treated rat artery sections. Moreover, the inhibition of NOS by l-NAME, 1,400 W, or l-NNA restored phenylephrine-induced vasoconstriction in carotid artery segments from Hcy-treated rats. In conclusion, our findings show that severe HHCy can promote an acute decrease in the endothelium-independent contractile responses of carotid arteries to adrenergic agonists. This effect was restored by nitric oxide synthase inhibitors, which further supports the involvement of nitric oxide in HHcy-derived vascular dysfunction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of microinjection of the nitric oxide (NO) precursor L-arginine (L-Arg), the NO synthase (NOS) inhibitors N-methyl-L-arginine (L-NAME) and 7-nitroindazole (7-NI), and the cyclic guanosine 3`,5`-monophosphate (cGMP) analog 8-Br-cGMP into the dorsal raphe nucleus (DRN) were assessed in rats using the elevated plus maze (EPM) and the forced swim test (FST). L-Arg (100 and 200 nmol) produced an anxiolytic-like effect in the EPM. 8-Br-cGMP (25 and 50 nmol) dose-dependently increased locomotor activity. In the FST, antidepressant-like effects were produced by L-Arg (50 and 100 nmol) and 8-Br-cGMP (12.5 and 25 nmol). Dual effects were observed with NOS inhibitors L-NAME and 7-NI in both the EPM and FST. While low doses of L-NAME (25 nmol) or 7-NI (1 nmol) induced a selective increase in EPM open arm exploration and a decrease in immobility time in the FST, high doses (L-NAME 400 nmol, 7-NI 10 nmol) decreased locomotor activity. These results show that interference with NO-mediated neurotransmission in the DRN induced significant and complex motor and emotional effects. Further studies are needed to elucidate the mechanisms involved in these effects. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypnea cervicornis agglutinin (HCA), a lectin isolated from the red marine alga has been previously shown to have an antinociceptive effect. In the present study in rats, mechanisms of action of HCA were addressed regarding mechanical hypernociception induced by carrageenan, ovalbumin (as antigen), and also by prostaglandin E(2) in rats. The lectin administered intravenously inhibited carrageenan- and antigen-induced hypernociception at 1,3, 5 and 7 h. This inhibitory effect was completely prevented when lectin was combined with mucin, demonstrating the role of carbohydrate-binding sites. The inhibition of inflammatory hypernociception by HCA was associated with the prevention of neutrophil recruitment to the plantar tissue of rats but was not associated with the inhibition of the release of pro-hypernociceptive cytokines (TNF-alpha, IL-1 beta and CINC-1). HCA also blocked mechanical hypernociception induced by PGE(2), which was prevented by the administration of nitric oxide synthase inhibitors. These results were corroborated by the increased circulating levels of NO metabolites following HCA treatment. These findings suggest that the anti-hypernociceptive effects of HCA are not associated with the inhibition of pro-inflammatory cytokine production. However, these effects seem to involve the inhibition of neutrophil migration and also the increase in NO production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Laboratory Investigation (2011) 91, 232-240; doi:10.1038/labinvest.2010.157; published online 30 August 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: Epidemiological data suggest that the risk of ethanol-associated cardiovascular disease is greater in men than in women. This study investigates the mechanisms underlying gender-specific vascular effects elicited by chronic ethanol consumption in rats. Experimental approach: Vascular reactivity experiments using standard muscle bath procedures were performed on isolated thoracic aortae from rats. mRNA and protein for inducible NO synthase (iNOS) and for endothelial NOS (eNOS) was assessed by RT-PCR or western blotting, respectively. Key results: In male rats, chronic ethanol consumption enhanced phenylephrine-induced contraction in both endothelium-intact and denuded aortic rings. However, in female rats, chronic ethanol consumption enhanced phenylephrine-induced contraction only in endothelium denuded aortic rings. After pre-incubation of endothelium-intact rings with L-NAME, both male and female ethanol-treated rats showed larger phenylephrine-induced contractions in aortic rings, compared to the control group. Acetylcholine-induced relaxation was not affected by ethanol consumption. The effects of ethanol on responses to phenylephrine were similar in ovariectomized (OVX) and intact (non-OVX) female rats. In the presence of aminoguanidine, but not 7-nitroindazole, the contractions to phenylephrine in rings from ethanol-treated female rats were greater than that found in control tissues in the presence of the inhibitors. mRNA levels for eNOS and iNOS were not altered by ethanol consumption. Ethanol intake reduced eNOS protein levels and increased iNOS protein levels in aorta from female rats. Conclusions and implications: Gender differences in the vascular effects elicited by chronic ethanol consumption were not related to ovarian hormones but seemed to involve the upregulation of iNOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic or intra-striatal acute administration of nitric oxide synthase (NOS) inhibitors causes catalepsy in rodents. This effect disappears after sub-chronic treatment. The aim of the present study was to investigate if this tolerance is related to changes in the expression of NOS or dopamine-2 (D(2)) receptor or to a recovery of NOS activity. Male albino Swiss mice (25-30 g) received single or sub-chronic (once a day for 4 days) i.p. injections of saline or L-nitro-arginine (L-NOARG, 40 mg/kg), a non-selective inhibitor of neuronal nitric oxide synthase (nNOS). Twenty-four hours after the last injection, the animals were killed and their brains were removed for immunohistochemistry assay to detect the presence of nNOS or for `in-situ` hybridisation study using (35)S-labeled oligonucleotide probe complementary to D(2) receptor mRNA. The results were analysed by computerised densitometry. Independent groups of animals received the same treatment, but were submitted to the catalepsy test and had their brain removed to measure nitrite and nitrate (NOx) concentrations in the striatum. Acute administration of L-NOARG caused catalepsy that disappeared after sub-chronic treatment. The levels of NOx were significantly reduced after acute L-NOARG treatment. The decrease in NOx after drug injection suffered a partial tolerance after sub-chronic treatment. The catalepsy time after acute or sub-chronic treatment with L-NOARG was negatively (r = -0.717) correlated with NOx levels. Animals that received repeated L-NOARG injections also showed an increase in the number of nNOS-positive neurons in the striatum. No change in D(2) receptor mRNA expression was found in the dorsal striatum, nucleus accumbens and substantia nigra. Together, these results suggest that tolerance to L-NOARG cataleptic effects do not depend on changes in D(2) receptors. They may depend, however, on plastic changes in nNOS neurons resulting in partial recovery of NO formation in the striatum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the influence of Protease Inhibitors (PI) on the occurrence of oral candidiasis in 111 HIV+ patients under PI therapy (Group A). The controls consisted of 56 patients that were not using PI drugs (Group B) and 26 patients that were not using any drugs for HIV therapy (Group C). The patient's cd4 cell counts were taken in account for the correlations. One hundred and ninety three patients were evaluated. The PI did not affect the prevalence of oral candidiasis (p = 0.158) or the frequency of C. albicans isolates (p = 0.133). Patients with lower cd4 cell counts showed a higher frequency of C. albicans isolates (p = 0.046) and a greater occurrence of oral candidiasis (p = 0.036).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO). In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS) in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT). Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test) and allodynia (von Frey hair test). Control animals did not present any alteration (sham-animals). The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL), blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30) in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X) and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%). Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%), reaching the greatest increase (60%) 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.