8 resultados para SUPERPARAMAGNETIC NANOPARTICLES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cepacia lipase was immobilized on superparamagnetic nanoparticles using three different methodologies (adsorption, chemisorption with carboxibenzaldehyde and chemisorption with glutaraldehyde) and employed in the kinetic resolution of a chiral drug precursor, (RS)-2-bromo-1-(phenyl)ethanol, via enantioselective acetylation reaction. An excellent improvement of lipase catalytical performance was observed. Free B. cepacia lipase gave the ester (S)-2 with poor E-value <30, and after its immobilization to magnetic nanoparticles the E-value was up to >200. The effect of several reaction parameters in the kinetic resolution was studied. The best results for kinetic resolution were obtained using vinyl acetate as acetyl donor and toluene as solvent, typically yielding the ester in high enantiomeric excess (>99%) and E-value (E > 200). Of the three tested immobilization methods, chemisorption with glutaraldehyde was the best one in terms of temperature stability and yield product. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipase B from Candida antarctica can be directly immobilized onto functionalized superparamagnetic nanoparticles, preserving its enzymatic activity in the enantioselective transesterification of secondary alcohols, with excellent results in terms of enantiomeric discrimination. The immobilized enzyme can be easily recovered with a magnet, allowing its reuse with negligible loss of activity. (C) 2009 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thioredoxin (Trx1), a very important protein for regulating intracellular redox reactions, was immobilized on iron oxide superparamagnetic nanoparticles previously coated with 3-aminopropyltriethoxysilane (APTS) via covalent coupling using the EDC (1-ethyl-3-{3-dimethylaminopropyl}carbodiimide) method. The system was extensively characterized by atomic force microscopy, vibrational and magnetic techniques. In addition, gold nanoparticles were also employed to probe the exposed groups in the immobilized enzyme based on the SERS (surface enhanced Raman scattering) effect, confirming the accessibility of the cysteines residues at the catalytic site. For the single coated superparamagnetic nanoparticle, by monitoring the enzyme activity with the Ellman reagent, DTNB=5,5`-dithio-bis(2-15 nitrobenzoic acid), an inhibitory effect was observed after the first catalytic cycle. The inhibiting effect disappeared after the application of an additional silicate coating before the AFTS treatment, reflecting a possible influence of unprotected iron-oxide sites in the redox kinetics. In contrast, the doubly coated system exhibited a normal in-vitro kinetic activity, allowing a good enzyme recovery and recyclability. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose the use of functionalized superparamagnetic nanoparticles for capturing, and transporting analytes, in association with an external miniature magnet to deposit such nanocarrier species at the electrode surface. This approach can be employed for the electroanalytical determination of chemical species capable of interacting with the nanoparticles, or in the opposite case, to block their response at the electrode surface. The concept was successfully demonstrated by using aminofunctionalized nanoparticles to block the discharge of hexacyanoferrate(II) ions, and to enhance the signals of aquapentacyanoferrate(II) ions via coordination to the surface amino groups. Selective analysis was also performed for silver ions, surpassing the stripping methods in terms of versatility and usefulness. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the formation of ferrihydrite nanoparticles (NPs) by hydrolysis of the Fe(III) alkoxide Fe(O(t)Bu)(3). Controlled amounts of water, up to 3.0 vol%, were added to the precursor solution yielding a series of hydrolyzed samples ranging from P0.0 (the unreacted precursor) to P3.0. X-ray diffraction (XRD) analysis evidenced the formation of high-crystalline ferrihydrite NP in sample P3.0, with grain size estimate of about 3.2 nm. The transition from the molecular precursor to the formation of crystalline magnetic NPs was followed through magnetization measurements M(T) and M(H), as well as Mossbauer spectroscopy (MS). M(T) measurements indicate a paramagnetic (PM) behavior for sample P0.0, characteristic of binuclear Fe-O-Fe units, which evolves to a superparamagnetic (SPM) behavior, with an energy barrier for the blocking process estimated for sample P3.0 as E(a) = 4.9 x 10(-21) J (E(a)/k(B) = 355 K), resulting in a high effective anisotropy constant K(eff) = 290 kJ/m(3). Magnetization loops at 5 K progressively change from PM-like to ferromagnetic-like shape upon increasing the hydrolysis process, although hysteresis (H(c) approximate to 500 Oe) only is apparent for P2.0 and higher. MS spectra at room temperature are PM/SPM doublets for all samples, while the MS spectra at T = 4.2 K reveal increasingly well-defined magnetic ordering as hydrolysis of the precursor stepwise progresses until well-crystallized ferrihydrite particles are formed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO(2)-C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0-10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO(2)-C matrix and have spherical shape with average diameter of similar to 10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T (B) similar to 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be similar to 4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H (C)) develops appreciably below T (B), and follows the H (C) ae [1 - (T/T (B))(0.5)] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H (C) to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present the synthesis and characterization of a hybrid nanocomposite constituted by iron oxide nanoparticles and vanadium oxide/Hexadecylamine (VO(x)/Hexa) nanotubes. Transmission Electron Microscopy (TEM) images show small particles (around 20 nm) in contact with the external wall of the multiwall tubes, which consist of alternate layers of VO(x) and Hexa. By Energy Dispersive Spectroscopy (EDS), we detected iron ions within the tube walls and we have also established that the nanoparticles are composed of segregated iron oxide. The samples were studied by Electron Paramagnetic Resonances (EPR) and dc-magnetization as a function of the magnetic field. The analysis of the magnetization and EPR data confirms that a fraction of the V atoms are in the V(4+) electronic state and that the nanoparticles exhibit a superparamagnetic behavior. The percentage of V and Fe present in the nanocomposite was determined using Instrumental Neutron Activation Analysis (INAA). (C) 2008 Elsevier B.V. All rights reserved.