152 resultados para SUM-FREQUENCY GENERATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The molecular arrangement in organic thin films is crucial for their increasing technological applications. Here, we use vibrational spectroscopy by sum-frequency generation (SFG) to study the ordering of polyelectrolyte layers adsorbed on silica for all steps of layer-by-layer (LbL) self-assembly. In situ measurements during adsorption and rinsing showed that the adsorbed polymer has a disordered conformation and confirmed surface charge overcompensation upon polyelectrolyte adsorption by probing the interfacial electric field. In dry films, the polymer chains acquired a net orientational ordering, which was affected, however, by the adsorption of subsequent layers. Such a detailed characterization may allow the control of LbL film structure and functionality with unprecedented power.
Resumo:
Sum-Frequency Vibrational Spectroscopy (SFVS) has been used to investigate the effect of nitrogen-flow drying on the molecular ordering of Layer-by-Layer (LbL) films of poly(allylamine hydrochloride) (PAH) alternated with poly(styrene sulfonate) (PSS). We find that films dried by spontaneous water evaporation are more ordered and homogeneous than films dried by nitrogen flow. The latter are quite inhomogeneous and may have regions with highly disordered polymer conformation. We propose that drying by spontaneous water evaporation reduces the effect of drag by the drying front, while during nitrogen-flow drying the fast evaporation of water ""freezes"" the disordered conformation of adsorbed polyelectrolyte molecules. These findings are important for many applications of LbL films, since device performance usually depends on film morphology and its molecular structure.
Resumo:
In this study cellulose acetate butyrate (CAB) and carboxymehtylcellulose acetate butyrate (CMCAB) films adsorbed onto silicon wafers were characterized by means of ellipsometry, atomic force microscopy (AFM), sum frequency generation spectroscopy (SFG) and contact angle measurements. The adsorption behavior of lysozyme (LIS) or bovine serum albumin (BSA) onto CAB and CMCAB films was investigated. The amounts of adsorbed LIS or BSA onto CMCAB films were more pronounced than those onto CAB films due to the presence of carboxymethyl group in the CMCAB structure. Besides, the adsorption of BSA molecules on CMCAB films was more favored than that of LIS molecules. Antimicrobial effect of LIS bound to CAB or CMCAB layers was evaluated using Micrococcus luteus as substrate.
Resumo:
In this perspectives article, we reflect upon the existence of chirality in atmospheric aerosol particles. We then show that organic particles collected at a field site in the central Amazon Basin under pristine background conditions during the wet and dry seasons consist of chiral secondary organic material. We show how the chiral response from the aerosol particles can be imaged directly without the need for sample dissolution, solvent extraction, or sample preconcentration. By comparing the chiral-response images with optical images, we show that chiral responses always originate from particles on the filter, but not all aerosol particles produce chiral signals. The intensity of the chiral signal produced by the size resolved particles strongly indicates the presence of chiral secondary organic material in the particle. Finally, we discuss the implications of our findings on chiral atmospheric aerosol particles in terms of climate-related properties and source apportionment.
Resumo:
Solution behavior of carboxymethylcellulose acetate butyrate (CMCAB) in acetone and ethyl acetate has been investigated by small-angle X-ray scattering (SAXS) and capillary viscometry and correlated with the characteristics of CMCAB films. Viscosity and SAXS measurements showed that ethyl acetate is a better solvent than acetone for CMCAB. Thin films of CMCAB were deposited onto silicon wafers (Si/SiO(2)) by spin coating. AFM images revealed that CMCAB spin coated films from solutions prepared in ethyl acetate were homogeneous and flat. However, films obtained from solutions in acetone were very rough. Contact angle measurements with polar and apolar test liquids characterized CMCAB surfaces as hydrophobic and allowed estimating the surface energy of CMCAB. Sum frequency generation vibrational spectroscopy was used to understand the role played by solvents and to gain insight about molecular orientation at Si/SiO(2)/CMCAB interface.
Resumo:
The polysaccharide chitosan has been largely used in many biological applications as a fat and cholesterol reducer, bactericide agent, and wound healing material. While the efficacy for some of such uses is proven, little is known about the molecular-level interactions involved in these applications. In this study, we employ mixed Langmuir and Langmuir-Blodgett (LB) films of negatively charged dimyristoyl phosphatidic acid (DMPA) anti cholesterol as cell membrane models to investigate the role of cholesterol in the molecular-level action of chitosan. Chitosan does not remove cholesterol froth the monolayer. The interaction with chitosan tends to expand the DMPA monolayer due to its interpenetration within the film. On the other hand, cholesterol induces condensation of the DMPA monolayer. The competing effects cause the surface pressure isotherms of mixed DMPA-cholesterol films on a chitosan subphase to be unaffected by the cholesterol mole fraction, due to distinct degrees of chitosan penetration into the film in the presence of cholesterol. By combining polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), we showed that chitosan induces order into negatively charged phospholipid layers, whereas the opposite occurs for cholesterol. In conclusion, chitosan has its penetration in the film modulated by cholesterol, and electrostatic interactions with negatively charged phospholipids, such as DMPA, are crucial for the action of chitosan.
Resumo:
Stability and interface properties of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) films adsorbed from acetone or ethyl acetate onto Si wafers have been investigated by means of contact angle measurements and atomic force microscopy (AFM). Surface energy (gamma(total)(S)) values determined for CAP adsorbed from acetone are larger than those from ethyl acetate. In the case of CAB films adsorbed from ethyl acetate and acetone were similar. Dewetting was observed by AFM only for CAP films prepared from ethyl acetate. Positive values of effective Hamaker constant (A(eff)) were found only for CAP prepared from ethyl acetate, corroborating with dewetting phenomena observed by AFM. Oil the contrary, negative values of A(eff) were determined for CAP and CAB prepared from acetone and for CAB prepared from ethyl acetate, Corroborating with experimental observations. Sum frequency generation (SFG) vibrational spectra indicated that CAP and CAB films prepared from ethyl acetate present more alkyl groups oriented perpendicularly to the polymer-air interface than those films prepared from acetone. Such preferential orientation corroborates with macroscopic contact angle measurements. Moreover, SFG spectra showed that acetone hinds strongly to Si wafers, creating a new surface for CAP and CAB films. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
The third-harmonic optical susceptibility, chi((3))(3 omega; omega, omega, omega) of a silicate glass ceramic containing sodium niobate nanocrystals was measured for incident broadband light with central frequency omega corresponding to 1900nm. Absolute values of |chi((3))| and the dispersion of the refractive index from 600 to 1900nm were measured using the spectrally resolved femtosecond Maker fringes technique. The experiments show that |chi((3))| is 1 order of magnitude larger than silica, and it grows by similar to 50% when the volume fraction occupied by the nanocrystals increases up to 40%. (C) 2011 Optical Society of America
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The problem of resonant generation of nonground-state condensates is addressed aiming at resolving the seeming paradox that arises when one resorts to the adiabatic representation. In this picture, the eigenvalues and eigenfunctions of a time-dependent Gross-Pitaevskii Hamiltonian are also functions of time. Since the level energies vary in time, no definite transition frequency can be introduced. Hence no external modulation with a fixed frequency can be made resonant. Thus, the resonant generation of adiabatic coherent modes is impossible. However, this paradox occurs only in the frame of the adiabatic picture. It is shown that no paradox exists in the properly formulated diabatic representation. The resonant generation of diabatic coherent modes is a well defined phenomenon. As an example, the equations are derived, describing the generation of diabatic coherent modes by the combined resonant modulation of the trapping potential and atomic scattering length.
Resumo:
O tratamento convencionalmente preconizado para cães acometidos pela CMD consiste na prescrição de vasodilatadores, agentes inotrópicos positivos (digitálico), diuréticos, dieta hipossódica e, quando necessário, antiarrítmicos. O carvedilol é um β-bloqueador de 3ª geração, não seletivo, que bloqueia igualmente e competitivamente os receptores (β1, β2 e α1). Produz uma evidente vasodilatação periférica, exerce efeitos anti-oxidantes, removendo radicais livres de oxigênio e prevenindo a peroxidação lipídica nas membranas cardíacas, prevenindo a perda de miócitos e a ocorrência de arritmias e reduzindo a taxa de mortalidade em pacientes humanos. O objetivo do presente estudo foi avaliar clínica, eletrocardiográfica, radiográfica e ecocardiograficamente a evolução de cães com cardiomiopatia dilatada (CMD) tratatos com terapia convencional associada ao carvedilol. Para tal foram avaliados 49 cães com CMD divididos em: grupo NT, tratado com terapia convencional, e grupo T, tratado com terapia convencional associada ao carvedilol. Os animais foram submetidos à avaliação clínica e a exames complementares durante o período de um ano. Os resultados demonstraram que a terapia com carvedilol apresentou boa tolerabilidade na dose de 0,3mg kg-1 12-12horas, aumentou a sobrevida dos cães em 30,9%, não alterou as pressões sistólica e diastólica, reduziu a frequência cardíaca após três semanas de terapia, melhorou significantemente as frações de encurtamento e ejeção após seis meses de tratamento, não promoveu alterações radiográficas e da distância E-septo, diminuiu o índice de letalidade da doença, fato demonstrado pela melhora no escore clínico e na classe funcional dos animais, obtida após três semanas de terapia com carvedilol.
Resumo:
CONTEXT: Mothers recall early-onset constipation in children attending gastroenterology clinics. OBJECTIVES: To study the bowel habit of young children in the community to determine, first, whether early-onset constipation is confirmed in this setting and, second, the agreement between recalled and recorded bowel habit. METHODS:Defecation data of 57 children aged 6.0-40.7 mo were obtained by maternal recall (questionnaire on predominant stool characteristics) and by record (1,934 defecations registered prospectively at home and in the nursery). The bowel habit was classified according to stool frequency and proportion of stool characteristics (soft, hard and/or runny). Two criteria were used to classify recorded data, since the cutoff point for hard stools to identify constipation is undefined in children: predominant criterion and adult criterion, respectively with >50% and >25% of stools with altered consistency. Bowel habit categories were: adequate, constipation, functional diarrhea and "other bowel habit". Nonparametric statistics, and the Kappa index for agreement between recalled and recorded bowel habit, were used. RESULTS: Constipation occurred in 17.5%, 10.5%, 19.3% of the children by recall, the predominant and the adult criteria, respectively. Constipation was the main recalled alteration, vs 12.3% "other bowel habit". Only one child classified as having functional diarrhea (by the adult criterion). Agreement between recalled and recorded bowel habit was fair for constipation, by the predominant and the adult criteria (K = 0.28 and 0.24, respectively), but only slight (K <0.16) for other bowel habit categories. Individual data, however, pointed to a better relationship between recalled constipation and the adult rather than the predominant criterion. CONCLUSIONS: Frequent early-onset constipation was confirmed. Fair agreement between recalled and recorded constipation by the two used criteria indicates that recalled data are quite reliable to detect constipation.
Resumo:
The transmetalation between boron and zinc is of great importance for application in organic synthesis, since it allows the formation of new carbon-carbon bonds between organometallic units and electrophiles. The direct arylation of aldehydes or more scarcely ketones, in a catalytic, enantioselective manner using chiral catalysts has been described recently. The enantiomerically enriched diarylmethanols obtained in these reactions are valuable precursors for important bioactive molecules. This review provides a synopsis of this ever-growing field and highlights some of the challenges that still remain.