37 resultados para STRUCTURE-BASED DRUG DESIGN

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two targets, reverse transcriptase (RT) and protease from HIV-1, were used during the past two decades to the discovery of non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI) that belong to the arsenal of the antiretroviral therapy. Herein these enzymes were chosen as templates for conducting a computer-aided ligand design. Ligand and structure-based drug designs were the starting points to select compounds from a database bearing more than five million compounds by means of cheminformatic tools. New promising lead structures are retrieved from the database, which are open to acquisition and test. Classes of molecules already described as NNRTI or PI in the literature also came out and were useful to prove the reliability of the workflow, and thus validating the work carried out so far. (c) 2007 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hemeprotein myeloperoxidase (MPO) participates in innate immune defense through its ability to generate potent microbicidal oxidants. However, these oxidants are also key mediators of the tissue damage associated with many inflammatory diseases. Thus, there is considerable interest in developing therapeutically useful MPO inhibitors. Here, we used structure-based drug design (SBDD) and ligand-based drug design (LBDD) to select for potentially new and selective MPO inhibitors. A pharmacophore model was developed based on the crystal structure of human MPO in complex with salicylhydroxamic acid (SHA), a known inhibitor of the enzyme. The pharmacophore model was used to screen the ZINC database for potential ligands, which were further filtered on the basis of their physical-chemical properties and docking score. The filtered compounds were visually inspected, and nine were purchased for experimental studies. Surprisingly, almost all of the selected compounds belonged to the aromatic hydrazide class, which had been previously described as MPO inhibitors. The compounds selected by virtual screening were shown to inhibit the chlorinating activity of MPO; the top four compounds displayed IC(50) values ranging from 1.0 to 2.8 mM. MPO inactivation by the most effective compound was shown to be irreversible. Overall, our results show that SBDD and LBDD may be useful for the rational development of new MPO inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT i.s stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogens exert important physiological effects through the modulation of two human estrogen receptor (hER) subtypes, alpa (hER alpha) and beta (hER beta). Because the levels and relative proportion of hER alpha and hER beta differ significantly in different target cells, selective hER ligands could target specific tissues or pathways regulated by one receptor subtype without affecting the other. To understand the structural and chemical basis by which small molecule modulators are able to discriminate between the two subtypes, we have applied three-dimensional target-based approaches employing a series of potent hER-ligands. Comparative molecular field analysis (CoMFA) studies were applied to a data set of 81 hER modulators, for which binding affinity values were collected for both hER alpha and hER beta. Significant statistical coefficients were obtained (hER alpha, q(2) = 0.76; hER beta, q(2) = 0.70), indicating the internal consistency of the models. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. Five hER crystal structures were used in GRID/PCA investigations to generate molecular interaction fields (MIF) maps. hER alpha and hER beta were separated using one factor. The resulting 3D information was integrated with the aim of revealing the most relevant structural features involved in hER subtype selectivity. The final QSAR and GRID/PCA models and the information gathered from 3D contour maps should be useful for the design or novel hER modulators with improved selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas` disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. Cruzain, the major cysteine protease from Trypanosoma cruzi, is an attractive target for antitrypanosomal chemotherapy. In the present work, classical two-dimensional quantitative structure-activity relationships (2D QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 45 thiosemicarbazone and semicarbazone derivatives as inhibitors of T. cruzi cruzain. Significant statistical models (HQSAR, q2=0.75 and r2=0.96; classical QSAR, q2=0.72 and r2=0.83) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 10 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, [image omitted]=0.95; classical QSAR, [image omitted]=0.91), indicating the existence of complementary between the two ligand-based drug design techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, tuberculosis (TB) is the leading cause of death among curable infectious diseases. Multidrug-resistant Mycobacterium tuberculosis is an emerging problem of great importance to public health, and there is an urgent need for new anti-TB drugs. In the present work, classical 2D quantitative structure-activity relationships (QSAR) and hologram QSAR (HQSAR) studies were performed on a training set of 91 isoniazid derivatives. Significant statistical models (classical QSAR, q(2) = 0.68 and r(2) = 0.72; HQSAR, q(2) = 0.63 and r(2) = 0.86) were obtained, indicating their consistency for untested compounds. The models were then used to evaluate an external test set containing 24 compounds which were not included in the training set, and the predicted values were in good agreement with the experimental results (HQSAR, r(pred)(2) = 0.87; classical QSAR, r(pred)(2) = 0.75).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic imides have been widely employed in drug design research due to their multiple pharmacological and biological properties. In the present study, two-dimensional quantitative structure-activity relationship (2D QSAR) studies were conducted on a series of potent analgesic cyclic imides using both classical and hologram QSAR (HQSAR) methods, yielding significant statistical models (classical QSAR, q(2) = 0.80; HQSAR, q(2) = 0.84). The models were then used to evaluate an external data test, and the predicted values were in good agreement with the experimental results, indicating their consistency for untested compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparative molecular field analysis (CoMFA) studies were conducted on a series of 100 isoniazid derivatives as anti-tuberculosis agents using two receptor-independent structural data set alignment strategies: (1) rigid-body fit, and (2) pharmacophore-based. Significant cross-validated correlation coefficients were obtained (CoMFA(1), q(2) = 0,75 and CoMFA(2), q(2) = 0.74), indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 20 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migrastatin, a macrolide natural product, and its structurally related analogs are potent inhibitors of cancer cell metastasis, invasion and migration. In the present work, a specialized fragment-based method was employed to develop QSAR models for a series of migrastatin and isomigrastatin analogs. Significant correlation coefficients were obtained (best model, q(2) = 0.76 and r(2) = 0.91) indicating that the QSAR models possess high internal consistency. The best model was then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results (R(2) (pred) = 0.85). The final model and the corresponding contribution maps, combined with molecular modeling studies, provided important insights into the key structural features for the anticancer activity of this family of synthetic compounds based on natural products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The family of Cyclin-Dependent Kinases (CDKs) can be subdivided into two major functional groups based on their roles in cell cycle and/or transcriptional control. CDK9 is the catalytic subunit of positive transcription elongation factor b (P-TEFb). CDK9 is the kinase of the TAK complex (Tat-associated kinase complex), and binds to Tat protein of HIV, suggesting a possible role for CDK9 in AIDS progression. CDK9 complexed with its regulatory partner cyclin T1, serves as a cellular mediator of the transactivation function of the HIV Tat protein. P-TEFb is responsible for the phosphorylation of the carboxyl-terminal domain of RNA Pol II, resulting in stimulation of transcription. Furthermore, the complexes containing CDK9 induce the differentiation in distinct tissue. The CDK9/cyclin T1 complex is expressed at higher level in more differentiated primary neuroectodermal and neuroblastoma tumors, showing a correlation between the kinase expression and tumor differentiation grade. This may have clinical and therapeutical implications for these tumor types. Among the CDK inhibitors two have shown to be effective against CDK9: Roscovitine and Flavopiridol. These two inhibitors prevented the replication of human immunodeficiency virus (HIV) type 1 by blocking Tat transactivation of the HIV type 1 promoter. These compounds inhibit CDKs by binding to the catalytic domain in place of ATP, preventing transfer of a phosphate group to the substrate. More sensitive therapeutic agents of CDK9 can be designed, and structural studies can add information in the understanding of this kinase. The major features related to CDK9 inhibition will be reviewed in this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous studies, we identified promising anti-Trypanosoma cruzi cruzain inhibitors based on thiazolylhydrazones. To optimize this series, a number of medicinal chemistry directions were explored and new thiazolylhydrazones and thiosemicarbazones were thus synthesized. Potent cruzain inhibitors were identified, such as thiazolylhydrazones 3b and 3j, which exhibited IC(50) of 200-400 nM. Furthermore, molecular docking studies showed concordance with experimentally derived structure-activity relationships (SAR) data. In the course of this work, lead compounds exhibiting in vitro activity against both the epimastigote and trypomastigote forms of T. cruzi were identified and in vivo general toxicity analysis was subsequently performed. Novel SAR were documented, including the importance of the thiocarbonyl carbon attached to the thiazolyl ring and the direct comparison between thiosemicarbazones and thiazolylhydrazones. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human parasitic diseases are the foremost threat to human health and welfare around the world. Trypanosomiasis is a very serious infectious disease against which the currently available drugs are limited and not effective. Therefore, there is an urgent need for new chemotherapeutic agents. One attractive drug target is the major cysteine protease from Trypanosoma cruzi, cruzain. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted on a series of thiosemicarbazone and semicarbazone derivatives as inhibitors of cruzain. Molecular modeling studies were performed in order to identify the preferred binding mode of the inhibitors into the enzyme active site, and to generate structural alignments for the three-dimensional quantitative structure-activity relationship (3D QSAR) investigations. Statistically significant models were obtained (CoMFA. r(2) = 0.96 and q(2) = 0.78; CoMSIA, r(2) = 0.91 and q(2) = 0.73), indicating their predictive ability for untested compounds. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the information gathered from the 3D CoMFA and CoMSIA contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of cruzain inhibitors, and should be useful for the design of new structurally related analogs with improved potency. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on its essential role in the life cycle of Trypanosoma cruzi, the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been considered a promising target for the development of novel chemotherapeutic agents for the treatment of Chagas` disease. In the course of our research program to discover novel inhibitors of this trypanosomatid enzyme, we have explored a combination of structure and ligand-based virtual screening techniques as a complementary approach to a biochemical screening of natural products using a standard biochemical assay. Seven natural products, including anacardic acids,. avonoid derivatives, and one glucosylxanthone were identified as novel inhibitors of T. cruzi GAPDH. Promiscuous inhibition induced by nonspecific aggregation has been discarded as specific inhibition was not reversed or affected in all cases in the presence of Triton X-100, demonstrating the ability of the assay to find authentic inhibitors of the enzyme. The structural diversity of this series of promising natural products is of special interest in drug design, and should therefore be useful in future medicinal chemistry efforts aimed at the development of new GAPDH inhibitors having increased potency. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmaniasis and trypanosomiasis are major causes of morbidity and mortality in both tropical and subtropical regions of the world. The current available drugs are limited, ineffective, and require long treatment regimens. Due to the high dependence of trypanosomatids on glycolysis as a source of energy, some glycolytic enzymes have been identified as attractive targets for drug design. In the present work, classical Two-Dimensional Quantitative Structure -Activity Relationships (2D QSAR) and Hologram QSAR (HQSAR) studies were performed on a series of adenosine derivatives as inhibitors of Leishmania mexicana Glyceraldehyde-3-Phosphate Dehydrogenase (LmGAPDH). Significant correlation coefficients (classical QSAR, r(2)=0.83 and q(2) =0.81; HQSAR, r(2)=0.91 and q(2) =0.86) were obtained for the 56 training set compounds, indicating the potential of the models for untested compounds. The models were then externally validated using a test set of 14 structurally related compounds and the predicted values were in good agreement with the experimental results (classical QSAR, r(pred)(2) = 0.94; HQSAR, r(pred)(2) = 0.92).