3 resultados para STENT RETRIEVAL

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional content-based image retrieval (CBIR) systems use low-level features such as colors, shapes, and textures of images. Although, users make queries based on semantics, which are not easily related to such low-level characteristics. Recent works on CBIR confirm that researchers have been trying to map visual low-level characteristics and high-level semantics. The relation between low-level characteristics and image textual information has motivated this article which proposes a model for automatic classification and categorization of words associated to images. This proposal considers a self-organizing neural network architecture, which classifies textual information without previous learning. Experimental results compare the performance results of the text-based approach to an image retrieval system based on low-level features. (c) 2008 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.