110 resultados para STARCH DIGESTIBILITY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
To develop a convenience healthy food snack the partially hydrogenated vegetable fat, used as the flavour fixative agent, was replaced by a non-fat-flavouring solution enriched with inulin and oligofructose. The effects of this replacement on chemical composition, in vitro rate of starch digestion and sensory acceptability were assessed. The new snack presented low-fat levels (0.1 per cent) and around a sevenfold increase in dietary fibre (15.3 per cent of dietary fibre, being 13.3 per cent of fructans) when compared with the traditional ones. The enrichment with fructans reduced the predicted Glycaemic Index by 25 per cent, thus indicating that this dietary fibre contributes effectively towards delaying the in vitro glycaemic response. Fructans-enriched snack presented overall acceptability score (6.6 ± 1.7) similar to the traditional one, flavoured with fatty fixative agent (7.4 ± 1.4). The healthy low-fat fibre-enriched snack produced presented the high sensory acceptability typical for this food product type
Resumo:
Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%,46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.
Resumo:
The effects of six extruded diets with different starch sources (cassava flour, brewer`s rice, corn, sorghum, peas or lentils) on dog total tract apparent digestibility and glycemic and insulinemic response were investigated. The experiment was carried out on thirty-six dogs with six dogs per diet in a completely randomized design. The diets containing brewer`s rice and cassava flour presented the greatest digestibility of dry matter, organic matter and gross energy (p < 0.05), followed by corn and sorghum; pea and lentil diets had the lowest. Starch digestibility was greater than 98% in all diets and was greater for brewer`s rice and cassava flour than for lentils and peas diets (p < 0.05). Dogs` immediate post-prandial glucose and insulin responses (AUC <= 30 min) were greater for brewer`s rice, corn, and cassava flour diets (p < 0.05), and later meal responses (AUC >= 30 min) were greater for sorghum, lentil and pea diets (p < 0.05). Variations in diet digestibility and post-prandial response can be explained by differences in chemical composition of each starch source including fibre content and starch granule structure. The nutritional particularities of each starch ingredient can be explored through diet formulations designed to modulate glycemic response. However, more studies are required to support these.
Resumo:
The effects of diets with different starch sources on the total tract apparent digestibility and glucose and insulin responses in cats were investigated. Six experimental diets consisting of 35% starch were extruded, each containing one of the following ingredients: cassava flour, brewers rice, corn, sorghum, peas, or lentils. The experiment was carried out on 36 cats with 6 replications per diet in a completely randomized block design. The brewers rice diet offered greater DM, OM, and GE digestibility than the sorghum, corn, lentil, and pea diets (P < 0.05). For starch digestibility, the brewers rice diet had greater values (98.6%) than the sorghum (93.9%), lentil (95.2%), and pea (96.3%) diets (P < 0.05); however, starch digestibility was > 93% for all the diets, proving that despite the low carbohydrate content of carnivorous diets, cats can efficiently digest this nutrient when it is properly processed into kibble. Mean and maximum glucose concentration and area under the glucose curve were greater for the corn-based diet than the cassava flour, sorghum, lentil, and pea diets (P < 0.05). The corn-based diets led to greater values for the mean glucose incremental concentration (10.2 mg/dL), maximum glucose incremental concentration (24.8 mg/dL), and area under the incremental glucose curve (185.5 mg.dL(-1).h(-1)) than the lentil diet (2.9 mg/dL, 3.1 mg/dL, and -40.4 mg.dL(-1).h(-1), respectively; P < 0.05). When compared with baseline values, only the corn diet stimulated an increase in the glucose response, occurring at 4 and 10 h postmeal (P < 0.05). The corn-based diet resulted in greater values for maximum incremental insulin concentration and area under the incremental insulin curve than the lentil-based diet (P < 0.05). However, plasma insulin concentrations rose in relation to the basal values for cats fed corn, sorghum, pea, and brewers rice diets (P < 0.05). Variations in diet digestibility and postprandial response can be explained by differences in the chemical composition of the starch source, including fiber content and granule structure, and also differences in the chemical compositions of the diets. The data suggest that starch has less of an effect on the cat postprandial glucose and insulin responses than on those of dogs and humans. This can be explained by the metabolic peculiarities of felines, which may slow and prolong starch digestion and absorption, leading to the delayed, less pronounced effects on their blood responses.
Resumo:
Nine ruminally cannulated cows fed different energy sources were used to evaluate an avian-derived polyclonal antibody preparation (PAP-MV) against the specific ruminal bacteria Streptococcus bovis, Fusobacterium necrophorum, Clostridium aminophilum, Peptostreptococcus anaerobius, and Clostridium stick-landii and monensin (MON) on ruminal fermentation patterns and in vivo digestibility. The experimental design was three 3 x 3 Latin squares distinguished by the main energy source in the diet [dry-ground corn grain (CG), high-moisture corn silage (HMCS), or citrus pulp (CiPu)]. Inside each Latin square, animals received one of the feed additives per period [none (CON), MON, or PAP-MV]. Dry matter intake and ruminal fermentation variables such as pH, total short-chain fatty acids (tSCFA), which included acetate, propionate, and butyrate, as well as lactic acid and NH(3)-N concentration were analyzed in this trial. Total tract DM apparent digestibility and its fractions were estimated using chromic oxide as an external marker. Each experimental period lasted 21 d. Ruminal fluid sampling was carried out on the last day of the period at 0, 2, 4, 6, 8, 10, and 12 h after the morning meal. Ruminal pH was higher (P = 0.006) 4 h postfeeding in MON and PAP-MV groups when compared with CON. Acetate: propionate ratio was greater in PAP-MV compared with MON across sampling times. Polyclonal antibodies did not alter (P > 0.05) tSCFA, molar proportion of acetate and butyrate, or lactic acid and NH(3)-N concentration. Ruminal pH was higher (P = 0.01), 4 h postfeeding in CiPu diets compared with CG and HMCS. There was no interaction between feed additive and energy source (P > 0.05) for any of the digestibility coefficients analyzed. Starch digestibility was less (P = 0.008) in PAP-MV when compared with CON and MON. In relation to energy sources, NDF digestibility was greater (P = 0.007) in CG and CiPu vs. the HMCS diet. The digestibility of ADF was greater (P = 0.002) in CiPu diets followed by CG and HMCS. Feeding PAP-MV or monensin altered ruminal fermentation patterns and digestive function in cows; however, those changes were independent of the main energy source of the diet.
Resumo:
The effects of different cooking conditions such as soaking, atmospheric (100 degrees C) or pressure boiling (121 degrees C), and draining of cooking water following thermal treatment on phenolic compounds and the DPPH radical scavenging capacity from two selected Brazilian bean cultivars (black and yellow-brown seed coat color) were investigated using a factorial design (2(3)). Factors that significantly reduced the total phenolic contents and antioxidant capacity in both cultivars were the soaking and draining stage. Independent of cooking temperature, total phenolics and antioxidant capacities were enhanced in treatments without soaking and where cooking water was not discarded, and this was likely linked to an increase of specific phenolic compounds detected by high performance liquid chromatography such as flavonols and free phenolic acids in both cultivars. Cooking of beans either at 100 or 121 degrees C, without a soaking stage and keeping the cooking water, would be recommendable for retaining antioxidant phenolic compounds.
Resumo:
The aim of this work was to study the effects of heat-moisture treatment (27% moisture, 100 degrees C, 16 h) and of enzymatic digestion (alpha-amylase and glucoamylase) on the properties of sweet potato (SP), Peruvian carrot (PC) and ginger (G) starches. The structural modification with heat-moisture treatment (HMT) affected crystallinity, enzyme susceptibility and viscosity profile. The changes in PC starch were the most pronounced, with a strong decrease of relative crystallinity (from 0.31 to 0.21) and a shift of X-ray pattern from B- to A-type. HMTof SP and G starch did not change the Xray pattern (A-type). The relative crystallinity of these starches changed only slightly, from 0.32 to 0.29 (SP) and from 0.33 to 0.32 (G). The extent of these structural changes (PC > SP > G) altered the susceptibility of the starches to enzymatic attack, but not in same order (PC > G > SP). HMT increased the starches digestion, probably due to rearrangement of disrupted crystallites, increasing accessible areas to attack of enzymes. The viscosity profiles and values changed significantly with HMT, resulting in higher pasting temperatures, decrease of viscosity values and no breakdown, i.e., stability at high temperatures and shear rates. Changes in pasting properties appeared to be more significant for PC and SP starch, whereas the changes for G starch were small. Setback was minimized following HMT in SP and G starches.
Resumo:
The aim of this study was to evaluate the production and the structural and physicochemical properties of RS obtained by molecular mass reduction (enzyme or acid) and hydrothermal treatment of chickpea starch. Native and gelatinized starch were submitted to acid (2 M HCl for 2.5 h) or enzymatic hydrolysis (pullulanase, 40 U/g per 10 h), autoclaved (121 degrees C/30 min), stored under refrigeration (4 degrees C/24 h), and lyophilized. The hydrolysis of starch increased the RS content from 16% to values between 20 and 32%, and the enzymatic treatment of the gelatinized starch was the most efficient. RS showed an increase in water absorption and water solubility indexes due to hydrolytic and thermal process. The processes for obtaining RS changed the crystallinity pattern from C to B. Hydrolysis treatments caused an increase in relative crystallinity due to the greater retrogradation caused by the reduction in MW. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of molecules. The viscosity seemed to be inversely proportional to the RS content in the sample.
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
Echinolaena inflexa (Poir.) Chase is an abundant C3 grass species with high biomass production in the Brazilian savanna (cerrado); Melinis minutiflora Beauv. is an African C4 forage grass widespread in cerrado and probably displacing some native herbaceous species. In the present work, we analysed seasonally the content and composition of soluble carbohydrates, the starch amounts and the above-ground biomass (phytomass) of E. inflexa and M. minutiflora plants harvested in two transects at 5 and 130 m from the border in a restrict area of cerrado at the Biological Reserve and Experimental Station of Mogi-Guaçu (SP, Brazil). Results showed that water soluble carbohydrates and starch amounts from the shoots of both species varied according to the time of the year, whilst in the underground organs, variations were observed mainly in relation to the transects. Marked differences in the pattern of the above-ground biomass production between these two grasses relative to their location in the Reserve were also observed, with two peaks of the invasive species (July and January) at the Reserve border. The differences in carbohydrate accumulation, partitioning and composition of individual sugars concerning time of the year and location in the Reserve were more related to the annual growth cycle of both grasses and possibly to specific physiological responses of M. minutiflora to disturbed environments in the Reserve border.
Resumo:
The effects of body weight or age and dietary digestible lysine and metabolizable energy on apparent digestibility of energy and dry matter were evaluated in piglets after weaning. The animals were weaned at 21 days of age and distributed in two groups: 8.68 ± 0.76 kg at 28 days of age (weaned 7 days earlier); and 12.73 ± 0.99 kg at 35 days of age (weaned 14 days earlier). The pigs were allotted in digestibility cages in a completely randomized block design with the following factorial arrangements: 2 × 4 composed of two weight categories and four levels of digestible lysine (1.222; 1.305; 1.390 and 1.497%); and 2 × 3 composed of two weight categories and three levels of metabolizable energy (3,510; 3,700 and 3,830 kcal/kg rations). Digestible lysine was evaluated in six replications and metabolizable energy in eight replications and each animal constituted an experimental unit. Piglets with higher body weight and age were more efficient in nitrogen retention and energetic balance, compared to lighter and younger piglets, particularly those given lower concentration of lysine in the diet. The energy increase favored nitrogen retention by the heavier and older piglets. However, coefficients of dry matter and energy apparent digestibility did not differ among weight categories. Older and heavier piglets were more efficient in nitrogen retention, although this efficacy depended on concentration of the energy in the diet. This better use of protein and energy suggest differences on nutritional requirements.
Resumo:
The objective of this study was to evaluate the nutritional traits and in vitro digestibility of silages from different corn cultivars harvested at two cutting heights. It was evaluated 11 cultivars (Dina 766, Dina 657, Dina 1000, P 3021, P 3041, C 805, C 333, AG 5011, FO 01, Dina co 9621 and BR 205) harvest 5 cm above ground (low) and 5 cm below the intersection of the first ear (high). It was used a random block design (three blocks), arranged in a 11 × 2 factorial scheme. Silages from plants harvested at high cutting height presented average content of dry matter significantly superior to silages from plants harvested at low height. Cultivars FO 01, AG 5011, Dina co 9621 and Dina 766 presented greater content of crude protein than cultivars C 805, P 3041 and P 3021, which presented the lowest contents of this nutrient. The raise in the cut height increased in vitro dry matter true digestibility coefficients and in vitro dry matter digestibility of silage evaluated. The increase in cut height improved nutritive value of silages by decreasing concentrations of fibrous fractions and increasing in vitro dry matter digestibility.
Resumo:
Estudaram-se os efeitos da administração de enramicina e monensina sódica sobre a digestão total dos nutrientes da dieta e o consumo de matéria seca digestível em bovinos. Doze fêmeas bovinas não-gestantes e não-lactantes (675 ± 63 kg PV) foram distribuídas inteiramente ao acaso em três tratamentos (controle, enramicina e monensina) e alimentados com dieta contendo 60% de concentrados (milho, farelo de soja e minerais) e 40% de volumoso (cana-de-açúcar). A enramicina foi administrada na dose de 20 mg/animal/dia e a monensina na dose de 300 mg/animal/dia. O experimento teve duração total de 21 dias, de modo que os últimos dez dias foram utilizados para administração do marcador externo (15 g de óxido crômico/animal/dia) e os últimos cinco dias para a coleta de fezes e amostragem dos alimentos. Nenhum dos antibióticos alterou os consumos de matéria seca digestível e NDT e a digestibilidade de matéria seca, proteína bruta, extrato etéreo, fibra em detergente ácido, fibra em detergente neutro, amido, energia bruta e nutrientes digestíveis totais.
Resumo:
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 degrees C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (T(m)). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. T(m) depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt%glycerin. The mixtures (0,5,10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 degrees C. The mixtures obtained were pressed on a hot plate press at 155 degrees C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 degrees C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 C (E(30 degrees C)`) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials. (c) 2011 Elsevier B.V. All rights reserved.